16 research outputs found
Characterization of radiative heat transfer in a spark-ignition engine through high-speed experiments and simulations
International audienceA combined experimental and Large-Eddy Simulation (LES) study of molecular radiation is presented for combustion in a homogeneous pre-mixed spark-ignition engine. Molecular radiation can account for ~10% of the engine heat loss and could have a noticeable impact on the local conditions within the combustion chamber. The Transparent Combustion Chamber (TCC) engine, a single-cylinder two-valve research engine with a transparent liner and piston for optical access, was used for this study. High-speed infrared emission spectroscopy and radiative post-processing of LES calculations have been performed to gain insight into the timescales and magnitude of radiative emissions of molecular gases during the combustion process. Both the measurements and simulations show significant Cycle-to-Cycle Variations (CCV) of radiative emission. There is agreement in the instantaneous radiative spectrum of experiment and simulation, but the crank-angle development of the radiative spectrum shows disagreement. The strengths and limitations of the optical experiments and radiative simulations are seen in the results and suggest pathways for future efforts in characterizing the influence of molecular radiation. In particular, focusing on the relative changes of the spectral features will be important as they contain information about the thermochemical properties of the gas mixture
Cost of Transport of Undulating Fin Propulsion
Autonomous robots are used to inspect, repair and maintain underwater assets. These tasks require energy-efficient robots, including efficient movement to extend available operational time. To examine the suitability of a propulsion system based on undulating fins, we built two robots with one and two fins, respectively, and conducted a parametric study for combinations of frequency, amplitude, wavenumber and fin shapes in free-swimming experiments, measuring steady-state swimming speed, power consumption and cost of transport. The following trends emerged for both robots. Swimming speed was more strongly affected by frequency than amplitude across the examined wavenumbers and fin heights. Power consumption was sensitive to frequency at low wavenumbers, and increasingly sensitive to amplitude at high wavenumbers. This increasing sensitivity of amplitude was more pronounced in tall rather than short fins. Cost of transport showed a complex relation with fin size and kinematics and changed drastically across the mapped parameter space. At equal fin kinematics as the single-finned robot, the double-finned robot swam slightly faster (>10%) with slightly lower power consumption (<20%) and cost of transport (<40%). Overall, the robots perform similarly to finned biological swimmers and other bio-inspired robots, but do not outperform robots with conventional propulsion systems.Biomechatronics & Human-Machine Contro
MicroRNAs Establish Robustness and Adaptability of a Critical Gene Network to Regulate Progenitor Fate Decisions during Cortical Neurogenesis
Over the course of cortical neurogenesis, the transition of progenitors from proliferation to differentiation requires a precise regulation of involved gene networks under varying environmental conditions. In order to identify such regulatory mechanisms, we analyzed microRNA (miRNA) target networks in progenitors during early and late stages of neurogenesis. We found that cyclin D1 is a network hub whose expression is miRNA-dosage sensitive. Experimental validation revealed a feedback regulation between cyclin D1 and its regulating miRNAs miR-20a, miR-20b, and miR-23a. Cyclin D1 induces expression of miR-20a and miR-20b, whereas it represses miR-23a. Inhibition of any of these miRNAs increases the developmental stage-specific mean and dynamic expression range (variance) of cyclin D1 protein in progenitors, leading to reduced neuronal differentiation. Thus, miRNAs establish robustness and stage-specific adaptability to a critical dosage-sensitive gene network during cortical neurogenesis. Understanding such network regulatory mechanisms for key developmental events can provide insights into individual susceptibilities for genetically complex neuropsychiatric disorders
MicroRNAs Establish Robustness and Adaptability of a Critical Gene Network to Regulate Progenitor Fate Decisions during Cortical Neurogenesis
International audienceOver the course of cortical neurogenesis, the transition of progenitors from proliferation to differentiation requires a precise regulation of involved gene networks under varying environmental conditions. In order to identify such regulatory mechanisms, we analyzed microRNA (miRNA) target networks in progenitors during early and late stages of neuro-genesis. We found that cyclin D1 is a network hub whose expression is miRNA-dosage sensitive. Experimental validation revealed a feedback regulation between cyclin D1 and its regulating miRNAs miR-20a, miR-20b, and miR-23a. Cyclin D1 induces expression of miR-20a and miR-20b, whereas it represses miR-23a. Inhibition of any of these miRNAs increases the developmental stage-specific mean and dynamic expression range (variance) of cyclin D1 protein in progenitors, leading to reduced neuronal differentiation. Thus, miRNAs establish robustness and stage-specific adaptability to a critical dosage-sensitive gene network during cortical neurogenesis. Understanding such network regulatory mechanisms for key developmental events can provide insights into individual suscepti-bilities for genetically complex neuropsychiatric disorders