26 research outputs found

    Maternal depression during pregnancy and cord blood DNA methylation: findings from the Avon Longitudinal Study of Parents and Children

    Get PDF
    Up to 13% of women may experience symptoms of depression during pregnancy or in the postpartum period. Depression during pregnancy has been associated with an increased risk of adverse neurodevelopmental outcomes in the child and epigenetic mechanisms could be one of the biological pathways to explain this association. In 844 mother–child pairs from the Avon Longitudinal Study of Parents and Children, we carried out an epigenome-wide association study (EWAS) to investigate associations between prospectively collected data on maternal depression ascertained by the Edinburgh Postnatal Depression Scale in pregnancy and DNA methylation in the cord blood of newborn offspring. In individual site analysis, we identified two CpG sites associated with maternal depression in the middle part of pregnancy. In our regional analysis, we identified 39 differentially methylated regions (DMRs). Seven DMRs were associated with depression at any time point during pregnancy, 7 associated with depression in mid-pregnancy, 23 were associated with depression in late pregnancy, and 2 DMRs were associated with depression throughout pregnancy. Several of these map to genes associated with psychiatric disease and brain development. We attempted replication in The Generation R Study and could not replicate our results. Although our findings in ALSPAC suggest that maternal depression could be associated with cord blood DNA methylation the results should be viewed as preliminary and hypothesis generating until further replicated in a larger sample

    Late Quaternary palaeoenvironment and chronology in the Traenadjupet Slide area offshore Norway

    No full text
    The northern mid-Norwegian continental slope was studied based on high-resolution side-scan sonar data, multibeam bathymetry, high-resolution and multichannel seismics together with gravity cores. Sedimentary provinces identified include a partly buried slide on the eastern, inner Voring Plateau, an area dominated by glacigenic debris flows south-west of the Traenadjupet Slide, the Traenadjupet Slide, and an area of glacimarine sedimentation and a slide scar north-east of the Traenadjupet Slide. The Traenadjupet Slide affected an area of about 14100 km2 and mobilised about 900 km3 of sediments. Little is known about the areal extent and volume of the older events. The glacigenic debris flows and glacimarine sediments were deposited while the Fennoscandian ice sheet was at the shelf break during the late Weichselian glacial maximum (prior to 13.2 14C kyr BP). Hemipelagic and/or contouritic sedimentation prevailed during the Holocene period. Two large slide scars were probably formed sometime prior to or during the late Weichselian glacial maximum (inner Voring Plateau and north-east of the Traenadjupet Slide) and another during the mid-Holocene interglacial period immediately prior to 4000 14C kyr BP (the Traenadjupet Slide). The two older scars may represent one event or two separate events. Deposition of poorly permeable glacigenic sediments over high-water-content fine-grained hemipelagic and/or contourites may have prevented water escape and increased failure potential Thus continental slope areas of episodically high sediment input of glacigenic sediments are prone to failure as illustrated by this study, which has identified at least two large slope failures. Failures have occurred both during glacial maxima, periods of climate deterioration and low global eustatic sea level, and during interglacials as today with improved climatic conditions and a high global eustatic sea leve
    corecore