3,031 research outputs found

    Measurement of the electronic compressibility of bilayer graphene

    Get PDF
    We present measurements of the electronic compressibility, KK, of bilayer graphene in both zero and finite magnetic fields up to 14 T, and as a function of both the carrier density and electric field perpendicular to the graphene sheet. The low energy hyperbolic band structure of bilayer graphene is clearly revealed in the data, as well as a sizable asymmetry between the conduction and valence bands. A sharp increase in K−1K^{-1} near zero density is observed for increasing electric field strength, signaling the controlled opening of a gap between these bands. At high magnetic fields, broad Landau level (LL) oscillations are observed, directly revealing the doubled degeneracy of the lowest LL and allowing for a determination of the disorder broadening of the levels.Comment: 5 pages, 3 figures; final version for publicatio

    Quantum Hall Effect and Semimetallic Behavior of Dual-Gated ABA-Stacked Trilayer Graphene

    Get PDF
    The electronic structure of multilayer graphenes depends strongly on the number of layers as well as the stacking order. Here we explore the electronic transport of purely ABA-stacked trilayer graphenes in a dual-gated field-effect device configuration. We find that both the zero-magnetic-field transport and the quantum Hall effect at high magnetic fields are distinctly different from the monolayer and bilayer graphenes, and that they show electron-hole asymmetries that are strongly suggestive of a semimetallic band overlap. When the ABA trilayers are subjected to an electric field perpendicular to the sheet, Landau level splittings due to a lifting of the valley degeneracy are clearly observed.Comment: 5 figure

    RXTE and ASCA Constraints on Non-thermal Emission from the A2256 Galaxy Cluster

    Get PDF
    An 8.3 hour observation of the Abell 2256 galaxy cluster using the Rossi X-ray Timing Explorer proportional counter array produced a high quality spectrum in the 2 - 30 keV range. Joint fitting with the 0.7 - 11 keV spectrum obtained with the Advanced Satellite for Astrophysics and Cosmology gas imaging spectrometer gives an upperlimit of 2.3x10^-7 photons/cm^2/sec/keV for non-thermal emission at 30 keV. This yields a lower limit to the mean magnetic field of 0.36 micro Gauss (uG) and an upperlimit of 1.8x10^-13 ergs/cm^3 for the cosmic-ray electron energy density. The resulting lower limit to the central magnetic field is ~1 - 3 uG While a magnetic field of ~0.1 - 0.2 uG can be created by galaxy wakes, a magnetic field of several uG is usually associated with a cooling flow or, as in the case of the Coma cluster, a subcluster merger. However, for A2256, the evidence for a merger is weak and the main cluster shows no evidence of a cooling flow. Thus, there is presently no satisfactory hypothesis for the origin of an average cluster magnetic field as high as >0.36 uG in the A2256 cluster.Comment: 8 pages, Astrophysical Journal (in press

    Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests

    Get PDF
    We first propose algorithms for checking language equivalence of finite automata over a large alphabet. We use symbolic automata, where the transition function is compactly represented using a (multi-terminal) binary decision diagrams (BDD). The key idea consists in computing a bisimulation by exploring reachable pairs symbolically, so as to avoid redundancies. This idea can be combined with already existing optimisations, and we show in particular a nice integration with the disjoint sets forest data-structure from Hopcroft and Karp's standard algorithm. Then we consider Kleene algebra with tests (KAT), an algebraic theory that can be used for verification in various domains ranging from compiler optimisation to network programming analysis. This theory is decidable by reduction to language equivalence of automata on guarded strings, a particular kind of automata that have exponentially large alphabets. We propose several methods allowing to construct symbolic automata out of KAT expressions, based either on Brzozowski's derivatives or standard automata constructions. All in all, this results in efficient algorithms for deciding equivalence of KAT expressions

    Disorder mediated splitting of the cyclotron resonance in two-dimensional electron systems

    Full text link
    We perform a direct study of the magnitude of the anomalous splitting in the cyclotron resonance (CR) of a two-dimensional electron system (2DES) as a function of sample disorder. In a series of AlGaAs/GaAs quantum wells, identical except for a range of carbon doping in the well, we find the CR splitting to vanish at high sample mobilities but to increase dramatically with increasing impurity density and electron scattering rates. This observation lends strong support to the conjecture that the non-zero wavevector, roton-like minimum in the dispersion of 2D magnetoplasmons comes into resonance with the CR, with the two modes being coupled via disorder.Comment: accepted to PRB Rapid Com

    Acoustic phonon scattering in a low density, high mobility AlGaN/GaN field effect transistor

    Full text link
    We report on the temperature dependence of the mobility, μ\mu, of the two-dimensional electron gas in a variable density AlGaN/GaN field effect transistor, with carrier densities ranging from 0.4×1012\times10^{12} cm−2^{-2} to 3.0×1012\times10^{12} cm−2^{-2} and a peak mobility of 80,000 cm2^{2}/Vs. Between 20 K and 50 K we observe a linear dependence μac−1=α\mu_{ac}^{-1} = \alphaT indicating that acoustic phonon scattering dominates the temperature dependence of the mobility, with α\alpha being a monotonically increasing function of decreasing 2D electron density. This behavior is contrary to predictions of scattering in a degenerate electron gas, but consistent with calculations which account for thermal broadening and the temperature dependence of the electron screening. Our data imply a deformation potential D = 12-15 eV.Comment: 3 pages, 2 figures, RevTeX. Submitted to Appl Phys Let
    • …
    corecore