11 research outputs found

    Optimizing the Information Yield of 3-D OCT in Glaucoma

    Get PDF
    PURPOSE. To determine, first, which regions of 3-D optical coherence tomography (OCT) volumes can be segmented completely in the majority of subjects and, second, the relationship between analyzed area and thickness measurement test-retest variability. METHODS. Three-dimensional OCT volumes (6X6 mm) centered around the fovea and optic nerve head (ONH) of 925 Rotterdam Study participants were analyzed; 44 participants were scanned twice. Volumes were segmented into 10 layers, and we determined the area where all layers could be identified in at least 95% (macula) or 90% (ONH) of subjects. Macular volumes were divided in 2 x 2, 4 x 4, 6 x 6, 8 x 8, or 68 blocks. We placed two circles around the ONH; the ONH had to fit into the smaller circle, and the larger circle had to fit into the segmentable part of the volume. The area between the circles was divided in 3 to 12 segments. We determined the test-retest variability (coefficient of repeatability) of the retinal nerve fiber layer (RNFL) and ganglion cell layer (RGCL) thickness measurements as a function of size of blocks/segments. RESULTS. Eighty-two percent of the macular volume could be segmented in at least 95% of subjects; for the ONH, this was 65% in at least 90%. The radii of the circles were 1.03 and 1.84 mm. Depending on the analyzed area, median test-retest variability ranged from 8% to 15% for macular RNFL, 11% to 22% for macular RGCL, 5% to 11% for the two together, and 18% to 22% for ONH RNFL. CONCLUSIONS. Test-retest variability hampers a detailed analysis of 3-D OCT data. Combined macular RNFL and RGCL thickness averaged over larger areas had the best test-retest variability. (Invest Ophthalmol Vis Sci. 2012; 53: 8162-8171) DOI:10.1167/iovs.12-1055

    ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure

    No full text
    Primary open-angle glaucoma (POAG) is a blinding disease. Two important risk factors for this disease are a positive family history and elevated intraocular pressure (IOP), which is also highly heritable. Genes found to date associated with IOP and POAG are ABCA1, CAV1/CAV2, GAS7 and TMCO1. However, these genes explain only a small part of the heritability of IOP and POAG.We performed a genome-wide association study of IOP in the population-based RotterdamStudy I and Rotterdam Study II using single nucleotide polymorphisms (SNPs) imputed to 1000 Genomes. In this discovery cohort (n = 8105), we identified a newlocus associated with IOP. The most significantly associated SNPwas rs58073046 (ß = 0.44, P-value = 1.87 × 10, minor allele frequency = 0.12), within the gene ARHGEF12. Independent replication in five population-based studies (n = 7471) resulted in an effect size in the same direction that was significantly associated (ß = 0.16, P-value = 0.04). The SNP was also significantly associated with POAG in two independent case-control studies [n = 1225 cases and n = 4117 controls; odds ratio (OR) = 1.53, P-value = 1.99 × 10], especially with high-tension glaucoma (OR = 1.66, P-value = 2.81 × 10; for normal-tension glaucoma OR = 1.29, P-value = 4.23 × 10). ARHGEF12 plays an important role in the RhoA/RhoA kinase pathway, which has been implicated in IOP regulation. Furthermore, it binds to ABCA1 and links the ABCA1, CAV1/CAV2 and GAS7 pathway to Mendelian POAG genes (MYOC, OPTN, WDR36). In conclusion, this study identified a novel association between IOP and ARHGEF12

    Associations with intraocular pressure across Europe: The European Eye Epidemiology (E3) Consortium

    No full text

    Increased High-Density Lipoprotein Levels Associated with Age-Related Macular Degeneration Evidence from the EYE-RISK and European Eye Epidemiology Consortia

    No full text
    Purpose: Genetic and epidemiologic studies have shown that lipid genes and high-density lipoproteins (HDLs) are implicated in age-related macular degeneration (AMD). We studied circulating lipid levels in relationship to AMD in a large European dataset. Design: Pooled analysis of cross-sectional data. Participants: Individuals (N = 30 953) aged 50 years or older participating in the European Eye Epidemiology (E3) consortium and 1530 individuals from the Rotterdam Study with lipid subfraction data. Methods: AMD features were graded on fundus photographs using the Rotterdam classification. Routine blood lipid measurements, genetics, medication, and potential confounders were extracted from the E3 database. In a subgroup of the Rotterdam Study, lipid subfractions were identified by the Nightingale biomarker platform. Random-intercepts mixed-effects models incorporating confounders and study site as a random effect were used to estimate associations. Main Outcome Measures: AMD features and stage; lipid measurements. Results: HDL was associated with an increased risk of AMD (odds ratio [OR], 1.21 per 1-mmol/l increase; 95% confidence interval [CI], 1.14-1.29), whereas triglycerides were associated with a decreased risk (OR, 0.94 per 1-mmol/l increase; 95% CI, 0.91-0.97). Both were associated with drusen size. Higher HDL raised the odds of larger drusen, whereas higher triglycerides decreases the odds. LDL cholesterol reached statistical significance only in the association with early AMD (P = 0.045). Regarding lipid subfractions, the concentration of extra-large HDL particles showed the most prominent association with AMD (OR, 1.24; 95% CI, 1.10-1.40). The cholesteryl ester transfer protein risk variant (rs17231506) for AMD was in line with increased HDL levels (P = 7.7 x 10(-7)), but lipase C risk variants (rs2043085, rs2070895) were associated in an opposite way (P = 1.0 x 10(-6) and P = 1.6 x 10(-4)). Conclusions: Our study suggested that HDL cholesterol is associated with increased risk of AMD and that triglycerides are negatively associated. Both show the strongest association with early AMD and drusen. Extra-large HDL subfractions seem to be drivers in the relationship with AMD, and variants in lipid genes play a more ambiguous role in this association. Whether systemic lipids directly influence AMD or represent lipid metabolism in the retina remains to be answered. (C) 2018 by the American Academy of Ophthalmolog
    corecore