3 research outputs found

    IgM Augments Complement Bactericidal Activity with Serum from a Patient with a Novel CD79a Mutation

    Get PDF
    Antibody replacement therapy for patients with antibody deficiencies contains only IgG. As a result, concurrent IgM and IgA deficiency present in a large proportion of antibody deficient patients persists. Especially patients with IgM deficiency remain at risk for recurrent infections of the gastrointestinal and respiratory tract. The lack of IgM in the current IgG replacement therapy is likely to contribute to the persistence of these mucosal infections because this antibody class is especially important for complement activation on the mucosal surface. We evaluated whether supplementation with IgM increased serum bactericidal capacity in vitro. Serum was collected from a patient with agammaglobulinemia and supplemented with purified serum IgM to normal levels. Antibody and complement deposition on the bacterial surface was determined by multi-color flow cytometry. Bacterial survival in serum was determined by colony-forming unit counts. We present a patient previously diagnosed with agammaglobulinemia due to CD79A (Igα) deficiency revealing a novel pathogenic insertion variant in the CD79a gene (NM_001783.3:c.353_354insT). Despite IgG replacement therapy and antibiotic prophylaxis, this patient developed a Campylobacter jejuni spondylodiscitis of lumbar vertebrae L4–L5. We found that serum IgM significantly contributes to complement activation on the bacterial surface of C. jejuni. Furthermore, supplementation of serum IgM augmented serum bactericidal activity significantly. In conclusion, supplementation of intravenous IgG replacement therapy with IgM may potentially offer greater protection against bacterial infections, also in the context of increasing antibiotic resistance

    High-dose posaconazole for azole-resistant aspergillosis and other difficult-to-treat mould infections

    Get PDF
    Background: Oral follow-up therapy is problematic in moulds with reduced azole-susceptibility, such as azole-resistant Aspergillus fumigatus infection. Currently, only intravenous liposomal amphotericin B (L-AmB) is advocated by guidelines for the treatment of azole-resistant aspergillosis infections. Preclinical research indicates that high-dose posaconazole (HD-POS) might be a feasible option provided that high drug exposure (ie POS serum through levels >3 mg/L) can be achieved and is safe. Objectives: To describe our experience with the use of oral HD-POS as treatment strategies for patients infected with pathogens with a POS MIC close to the clinical breakpoint. Patients/Methods: We review evidence supporting the use of HD-POS and describe our experience on safety and efficacy in 16 patients. In addition, we describe the adverse events (AE) observed in 25 patients with POS concentrations at the higher end of the population distribution during treatment with the licensed dose. Results: Sixteen patients were treated intentionally with HD-POS for voriconazole-resistant invasive aspergillosis (7/16), mucormycosis (4/16), salvage therapy for IA (4/16) and IA at a sanctuary site (spondylodiscitis) in 1. Grade 3-4 AEs were observed in 6, and all of them were considered at least possibly related. Grade 3-4 AEs were observed in 5 of the 25 patients with spontaneous high POS serum through levels considered at least possibly related using Naranjo scale. Conclusions: High-dose posaconazole is a treatment option if strict monitoring for both exposure and for AE is possible

    Immunodeficiency in Bloom’s Syndrome

    Get PDF
    Bloom’s syndrome (BS) is an autosomal recessive disease, caused by mutations in the BLM gene. This gene codes for BLM protein, which is a helicase involved in DNA repair. DNA repair is especially important for the development and maturation of the T and B cells. Since BLM is involved in DNA repair, we aimed to study if BLM deficiency affects T and B cell development and especially somatic hypermutation (SHM) and class switch recombination (CSR) processes. Clinical data of six BS patients was collected, and immunoglobulin serum levels were measured at different time points. In addition, we performed immune phenotyping of the B and T cells and analyzed the SHM and CSR in detail by analyzing IGHA and IGHG transcripts using next-generation sequencing. The serum immunoglobulin levels were relatively low, and patients had an increased number of infections. The absolute number of T, B, and NK cells were low but still in the normal range. Remarkably, all BS patients studied had a high percentage (20–80%) of CD4+ and CD8+ effector memory T cells. The process of SHM seems normal; however, the Ig subclass distribution was not normal, since the BS patients had more IGHG1 and IGHG3 transcripts. In conclusion, BS patients have low number of lymphocytes, but the immunodeficiency seems relatively mild since they have no severe or opportunistic infections. Most changes in the B cell development were seen in the CSR process; however, further studies are necessary to elucidate the exact role of BLM in CSR
    corecore