36 research outputs found

    Quantum Dynamics of the Driven and Dissipative Rabi Model

    Full text link
    The Rabi model considers a two-level system (or spin-1/2) coupled to a quantized harmonic oscillator and describes the simplest interaction between matter and light. The recent experimental progress in solid-state circuit quantum electrodynamics has engendered theoretical efforts to quantitatively describe the mathematical and physical aspects of the light-matter interaction beyond the rotating wave approximation. We develop a stochastic Schr\"{o}dinger equation approach which enables us to access the strong-coupling limit of the Rabi model and study the effects of dissipation, and AC drive in an exact manner. We include the effect of ohmic noise on the non-Markovian spin dynamics resulting in Kondo-type correlations, as well as cavity losses. We compute the time evolution of spin variables in various conditions. As a consideration for future work, we discuss the possibility to reach a steady state with one polariton in realistic experimental conditions.Comment: 13 pages, final versio

    Subradiant states of quantum bits coupled to a one-dimensional waveguide

    Get PDF
    The properties of coupled emitters can differ dramatically from those of their individual constituents. Canonical examples include sub- and super-radiance, wherein the decay rate of a collective excitation is reduced or enhanced due to correlated interactions with the environment. Here, we systematically study the properties of collective excitations for regularly spaced arrays of quantum emitters coupled to a one-dimensional (1D) waveguide. We find that, for low excitation numbers, the modal properties are well-characterized by spin waves with a definite wavevector. Moreover, the decay rate of the most subradiant modes obeys a universal scaling with a cubic suppression in the number of emitters. Multi-excitation subradiant eigenstates can be built from fermionic combinations of single excitation eigenstates; such "fermionization" results in multiple excitations that spatially repel one another. We put forward a method to efficiently create and measure such subradiant states, which can be realized with superconducting qubits. These measurement protocols probe both real-space correlations (using on-site dispersive readout) and temporal correlations in the emitted field (using photon correlation techniques).Comment: 21 pages, 9 figure

    A blueprint for a Digital-Analog Variational Quantum Eigensolver using Rydberg atom arrays

    Full text link
    We address the task of estimating the ground-state energy of Hamiltonians coming from chemistry. We study numerically the behavior of a digital-analog variational quantum eigensolver for the H2, LiH and BeH2 molecules, and we observe that one can estimate the energy to a few percent points of error leveraging on learning the atom register positions with respect to selected features of the molecular Hamiltonian and then an iterative pulse shaping optimization, where each step performs a derandomization energy estimation.Comment: 11 pages, 8 figure
    corecore