132 research outputs found

    Linking spatial distribution of Rhipicephalus appendiculatus to climatic variables important for the successful biocontrol by Metarhizium anisopliae in Eastern Africa

    Get PDF
    Cattle production is constantly threatened by diseases like East Coast fever, also known as theileriosis, caused by the protozoan parasite Theileria parva which is transmitted by ticks such as the brown ear tick, Rhipicephalus appendiculatus. To reduce the extensive use of chemical acaricides, fungal-based microbial control agents such as Metarhizium anisopliae have been tested and show promising results against R. appendiculatus both in field and in semi-field experiments in Africa. However, no known endeavors to link the spatial distribution of R. appendiculatus to climatic variables important for the successful application of M. anisopliae in selected East African countries exists. This work therefore aims to improve the successful application of M. anisopliae against R. appendiculatus by designing a temperature-dependent model for the efficacy of M. anisopliae against three developmental stages (larvae, nymphs, adults) of R. appendiculatus. Afterward a spatial prediction of potential areas where this entomopathogenic fungus might cause a significant epizootic in R. appendiculatus population in three selected countries (Kenya, Tanzania, Uganda) in Eastern Africa were generated. This can help to determine whether the temperature and rainfall at a local or regional scale might give good conditions for application of M. anisopliae and successful microbial control of R. appendiculatus.publishedVersio

    A convolutional neural network with image and numerical data to improve farming of edible crickets as a source of food—A decision support system

    Get PDF
    Crickets (Gryllus bimaculatus) produce sounds as a natural means to communicate and convey various behaviors and activities, including mating, feeding, aggression, distress, and more. These vocalizations are intricately linked to prevailing environmental conditions such as temperature and humidity. By accurately monitoring, identifying, and appropriately addressing these behaviors and activities, the farming and production of crickets can be enhanced. This research implemented a decision support system that leverages machine learning (ML) algorithms to decode and classify cricket songs, along with their associated key weather variables (temperature and humidity). Videos capturing cricket behavior and weather variables were recorded. From these videos, sound signals were extracted and classified such as calling, aggression, and courtship. Numerical and image features were extracted from the sound signals and combined with the weather variables. The extracted numerical features, i.e., Mel-Frequency Cepstral Coefficients (MFCC), Linear Frequency Cepstral Coefficients, and chroma, were used to train shallow (support vector machine, k-nearest neighbors, and random forest (RF)) ML algorithms. While image features, i.e., spectrograms, were used to train different state-of-the-art deep ML models, i,e., convolutional neural network architectures (ResNet152V2, VGG16, and EfficientNetB4). In the deep ML category, ResNet152V2 had the best accuracy of 99.42%. The RF algorithm had the best accuracy of 95.63% in the shallow ML category when trained with a combination of MFCC+chroma and after feature selection. In descending order of importance, the top 6 ranked features in the RF algorithm were, namely humidity, temperature, C#, mfcc11, mfcc10, and D. From the selected features, it is notable that temperature and humidity are necessary for growth and metabolic activities in insects. Moreover, the songs produced by certain cricket species naturally align to musical tones such as C# and D as ranked by the algorithm. Using this knowledge, a decision support system was built to guide farmers about the optimal temperature and humidity ranges and interpret the songs (calling, aggression, and courtship) in relation to weather variables. With this information, farmers can put in place suitable measures such as temperature regulation, humidity control, addressing aggressors, and other relevant interventions to minimize or eliminate losses and enhance cricket production

    Mathematical modelling of the interactive dynamics of wild and <i>Microsporidia MB</i>-infected mosquitoes

    Get PDF
    A recent discovery highlighted that mosquitoes infected with Microsporidia MB are unable to transmit the Plasmodium to humans. Microsporidia MB is a symbiont transmitted vertically and horizontally in the mosquito population, and these transmission routes are known to favor the persistence of the parasite in the mosquito population. Despite the dual transmission, data from field experiments reveal a low prevalence of MB-infected mosquitoes in nature. This study proposes a compartmental model to understand the prevalence of MB-infected mosquitoes. The dynamic of the model is obtained through the computation of the basic reproduction number and the analysis of the stability of the MB-free and coexistence equilibria. The model shows that, in spite of the high vertical transmission efficiency of Microsporidia MB, there can still be a low prevalence of MB-infected mosquitoes. Numerical analysis of the model shows that male-to-female horizontal transmission contributes more than female-to-male horizontal transmission to the spread of MB-infected mosquitoes. Moreover, the female-to-male horizontal transmission contributes to the spread of the symbiont only if there are multiple mating occurrences for male mosquitoes. Furthermore, when fixing the efficiencies of vertical transmission, the parameters having the greater influence on the ratio of MB-positive to wild mosquitoes are identified. In addition, by assuming a similar impact of the temperature on wild and MB-infected mosquitoes, our model shows the seasonal fluctuation of MB-infected mosquitoes. This study serves as a reference for further studies, on the release strategies of MB-infected mosquitoes, to avoid overestimating the MB-infection spread

    Temperature-dependent phenology of Plutella xylostella (Lepidoptera: Plutellidae): Simulation and visualization of current and future distributions along the Eastern Afromontane

    Get PDF
    There is a scarcity of laboratory and field-based results showing the movement of the diamondback moth (DBM) Plutella xylostella (L.) across a spatial scale. We studied the population growth of the diamondback moth (DBM) Plutella xylostella (L.) under six constant temperatures, to understand and predict population changes along altitudinal gradients and under climate change scenarios. Non-linear functions were fitted to continuously model DBM development, mortality, longevity and oviposition. We compiled the best-fitted functions for each life stage to yield a phenology model, which we stochastically simulated to estimate the life table parameters. Three temperature-dependent indices (establishment, generation and activity) were derived from a logistic population growth model and then coupled to collected current (2013) and downscaled temperature data from AFRICLIM (2055) for geospatial mapping. To measure and predict the impacts of temperature change on the pest's biology, we mapped the indices along the altitudinal gradients of Mt. Kilimanjaro (Tanzania) and Taita Hills (Kenya) and assessed the differences between 2013 and 2055 climate scenarios. The optimal temperatures for development of DBM were 32.5, 33.5 and 33ĂŠC for eggs, larvae and pupae, respectively. Mortality rates increased due to extreme temperatures to 53.3, 70.0 and 52.4% for egg, larvae and pupae, respectively. The net reproduction rate reached a peak of 87.4 female offspring/female/generation at 20ĂŠC. Spatial simulations indicated that survival and establishment of DBM increased with a decrease in temperature, from low to high altitude. However, we observed a higher number of DBM generations at low altitude. The model predicted DBM population growth reduction in the low and medium altitudes by 2055. At higher altitude, it predicted an increase in the level of suitability for establishment with a decrease in the number of generations per year. If climate change occurs as per the selected scenario, DBM infestation may reduce in the selected region. The study highlights the need to validate these predictions with other interacting factors such as cropping practices, host plants and natural enemies.Peer reviewe

    Harnessing data science to improve integrated management of invasive pest species across Africa: An application to Fall armyworm (Spodoptera frugiperda) (J.E. Smith) (Lepidoptera: Noctuidae)

    Get PDF
    After five years of its first report on the African continent, Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is considered a major threat to maize, sorghum, and millet production in sub-Saharan Africa. Despite the rigorous work already conducted to reduce FAW prevalence, the dynamics and invasion mechanisms of FAW in Africa are still poorly understood. This study applied interdisciplinary tools, analytics, and algorithms on a FAW dataset with a spatial lens to provide insights and project the intensity of FAW infestation across Africa. The data collected between January 2018 and December 2020 in selected locations were matched with the monthly average data of the climatic and environmental variables. The multilevel analytics aimed to identify the key factors that influence the dynamics of spatial and temporal pest density and occurrence at a 2 km x 2 km grid resolution. The seasonal variations of the identified factors and dynamics were used to calibrate rule-based analytics employed to simulate the monthly densities and occurrence of the FAW for the years 2018, 2019, and 2020. Three FAW density level classes were inferred, i.e., low (0–10 FAW moth per trap), moderate (11–30 FAW moth per trap), and high (>30 FAW moth per trap). Results show that monthly density projections were sensitive to the type of FAW host vegetation and the seasonal variability of climatic factors. Moreover, the diversity in the climate patterns and cropping systems across the African sub-regions are considered the main drivers of FAW abundance and variation. An optimum overall accuracy of 53% was obtained across the three years and at a continental scale, however, a gradual increase in prediction accuracy was observed among the years, with 2020 predictions providing accuracies greater than 70%. Apart from the low amount of data in 2018 and 2019, the average level of accuracy obtained could also be explained by the non-inclusion of data related to certain key factors such as the influence of natural enemies (predators, parasitoids, and pathogens) into the analysis. Further detailed data on the occurrence and efficiency of FAW natural enemies in the region may help to complete the tri-trophic interactions between the host plants, pests, and beneficial organisms. Nevertheless, the tool developed in this study provides a framework for field monitoring of FAW in Africa that may be a basis for a future decision support system (DSS).Harnessing data science to improve integrated management of invasive pest species across Africa: An application to Fall armyworm (Spodoptera frugiperda) (J.E. Smith) (Lepidoptera: Noctuidae)publishedVersio

    Advances in crop insect modelling methods—Towards a whole system approach

    Get PDF
    A wide range of insects affect crop production and cause considerable yield losses. Difficulties reside on the development and adaptation of adequate strategies to predict insect pests for their timely management to ensure enhanced agricultural production. Several conceptual modelling frameworks have been proposed, and the choice of an approach depends largely on the objective of the model and the availability of data. This paper presents a summary of decades of advances in insect population dynamics, phenology models, distribution and risk mapping. Existing challenges on the modelling of insects are listed; followed by innovations in the field. New approaches include artificial neural networks, cellular automata (CA) coupled with fuzzy logic (FL), fractal, multi-fractal, percolation, synchronization and individual/agent based approaches. A concept for assessing climate change impacts and providing adaptation options for agricultural pest management independently of the United Nations Intergovernmental Panel on Climate Change (IPCC) emission scenarios is suggested. A framework for estimating losses and optimizing yields within crop production system is proposed and a summary on modelling the economic impact of pests control is presented. The assessment shows that the majority of known insect modelling approaches are not holistic; they only concentrate on a single component of the system, i.e. the pest, rather than the whole crop production system. We suggest system thinking as a possible approach for linking crop, pest, and environmental conditions to provide a more comprehensive assessment of agricultural crop production.Peer reviewe

    A Novel Tightly Coupled Information System for Research Data Management

    No full text
    Most research projects are data driven. However, many organizations lack proper information systems (IS) for managing data, that is, planning, collecting, analyzing, storing, archiving, and sharing for use and re-use. Many research institutions have disparate and fragmented data that make it difficult to uphold the FAIR (findable, accessible, interoperable, and reusable) data management principles. At the same time, there is minimal practice of open and reproducible science. To solve these challenges, we designed and implemented an IS architecture for research data management. Through it, we have a centralized platform for research data management. The IS has several software components that are configured and unified to communicate and share data. The software components are, namely, common ontology, data management plan, data collectors, and the data warehouse. Results show that the IS components have gained global traction, 56.3% of the total web hits came from news users, and 259 projects had metadata (and 17 of those also had data resources). Moreover, the IS aligned the institution’s scientific data resources to universal standards such as the FAIR principles of data management and at the same time showcased open data, open science, and reproducible science. Ultimately, the architecture can be adopted by other organizations to manage research data

    Spatio-temporal characterization of phenotypic resistance in malaria vector species

    No full text
    Abstract Background Malaria, a deadly disease caused by Plasmodium protozoa parasite and transmitted through bites of infected female Anopheles mosquitoes, remains a significant public health challenge in sub-Saharan Africa. Efforts to eliminate malaria have increasingly focused on vector control using insecticides. However, the emergence of insecticide resistance (IR) in malaria vectors pose a formidable obstacle, and the current IR mapping models remain static, relying on fixed coefficients. This study introduces a dynamic spatio-temporal approach to characterize phenotypic resistance in Anopheles gambiae complex and Anopheles arabiensis. We developed a cellular automata (CA) model and applied it to data collected from Ethiopia, Nigeria, Cameroon, Chad, and Burkina Faso. The data encompasses georeferenced records detailing IR levels in mosquito vector populations across various classes of insecticides. In characterizing the dynamic patterns of confirmed resistance, we identified key driving factors through correlation analysis, chi-square tests, and extensive literature review. Results The CA model demonstrated robustness in capturing the spatio-temporal dynamics of confirmed IR states in the vector populations. In our model, the key driving factors included insecticide usage, agricultural activities, human population density, Land Use and Land Cover (LULC) characteristics, and environmental variables. Conclusions The CA model developed offers a robust tool for countries that have limited data on confirmed IR in malaria vectors. The embrace of a dynamical modeling approach and accounting for evolving conditions and influences, contribute to deeper understanding of IR dynamics, and can inform effective strategies for malaria vector control, and prevention in regions facing this critical health challenge
    • …
    corecore