3,455 research outputs found
Clock and Trigger Synchronization between Several Chassis of Digital Data Acquisition Modules
In applications with segmented high purity Ge detectors or other detector
arrays with tens or hundreds of channels, where the high development cost and
limited flexibility of application specific integrated circuits outweigh their
benefits of low power and small size, the readout electronics typically consist
of multi-channel data acquisition modules in a common chassis for power, clock
and trigger distribution, and data readout. As arrays become larger and reach
several hundred channels, the readout electronics have to be divided over
several chassis, but still must maintain precise synchronization of clocks and
trigger signals across all channels. This division becomes necessary not only
because of limits given by the instrumentation standards on module size and
chassis slot numbers, but also because data readout times increase when more
modules share the same data bus and because power requirements approach the
limits of readily available power supplies. In this paper, we present a method
for distributing clocks and triggers between 4 PXI chassis containing DGF
Pixie-16 modules with up to 226 acquisition channels per chassis in a data
acquisition system intended to instrument the over 600 channels of the SeGA
detector array at the National Superconducting Cyclotron Laboratory. Our
solution is designed to achieve synchronous acquisition of detector waveforms
from all channels with a jitter of less then 1 ns, and can be extended to a
larger number of chassis if desired.Comment: CAARI 200
From collective periodic running states to completely chaotic synchronised states in coupled particle dynamics
We consider the damped and driven dynamics of two interacting particles
evolving in a symmetric and spatially periodic potential. The latter is exerted
to a time-periodic modulation of its inclination. Our interest is twofold:
Firstly we deal with the issue of chaotic motion in the higher-dimensional
phase space. To this end a homoclinic Melnikov analysis is utilised assuring
the presence of transverse homoclinic orbits and homoclinic bifurcations for
weak coupling allowing also for the emergence of hyperchaos. In contrast, we
also prove that the time evolution of the two coupled particles attains a
completely synchronised (chaotic) state for strong enough coupling between
them. The resulting `freezing of dimensionality' rules out the occurrence of
hyperchaos. Secondly we address coherent collective particle transport provided
by regular periodic motion. A subharmonic Melnikov analysis is utilised to
investigate persistence of periodic orbits. For directed particle transport
mediated by rotating periodic motion we present exact results regarding the
collective character of the running solutions entailing the emergence of a
current. We show that coordinated energy exchange between the particles takes
place in such a manner that they are enabled to overcome - one particle
followed by the other - consecutive barriers of the periodic potential
resulting in collective directed motion
Synapomorphy, Parsimony, And Evidence
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149682/1/tax02520.pd
Import of cytochrome c into mitochondria
The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa.
A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5–10-fold by NADH > NADPH > glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function.
Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c
Bosonic Reduction of Susy Generalized Harry Dym Equation
In this paper we construct the two component supersymmetric generalized Harry
Dym equation which is integrable and study various properties of this model in
the bosonic limit. In particular, in the bosonic limit we obtain a new
integrable system which, under a hodograph transformation, reduces to a coupled
three component system. We show how the Hamiltonian structure transforms under
a hodograph transformation and study the properties of the model under a
further reduction to a two component system. We find a third Hamiltonian
structure for this system (which has been shown earlier to be a bi-Hamiltonian
system) making this a genuinely tri-Hamiltonian system. The connection of this
system to the modified dispersive water wave equation is clarified. We also
study various properties in the dispersionless limit of our model.Comment: 21 page
Parsimony, Synapomorphy, And Explanatory Power: A Reply To Duncan
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149709/1/tax04403.pd
Non-existence of stationary two-black-hole configurations
We resume former discussions of the question, whether the spin-spin repulsion
and the gravitational attraction of two aligned black holes can balance each
other. To answer the question we formulate a boundary value problem for two
separate (Killing-) horizons and apply the inverse (scattering) method to solve
it. Making use of results of Manko, Ruiz and Sanabria-G\'omez and a novel black
hole criterion, we prove the non-existence of the equilibrium situation in
question.Comment: 15 pages, 3 figures; Contribution to Juergen Ehlers Memorial Issue
(GeRG journal
The decay of quadrupole-octupole states in Ca and Ce
Background: Two-phonon excitations originating from the coupling of two
collective one-phonon states are of great interest in nuclear structure
physics. One possibility to generate low-lying excitations is the coupling
of quadrupole and octupole phonons.
Purpose: In this work, the -decay behavior of candidates for the
state in the doubly-magic nucleus Ca and in
the heavier and semi-magic nucleus Ce is investigated.
Methods: experiments have been carried out at the
High Intensity -ray Source (HIS) facility in combination with
the high-efficiency -ray spectroscopy setup consisting of
HPGe and LaBr detectors. The setup enables the acquisition of
- coincidence data and, hence, the detection of direct decay
paths.
Results: In addition to the known ground-state decays, for Ca the
decay into the state was observed, while for Ce the direct
decays into the and the state were detected. The experimentally
deduced transition strengths and excitation energies are compared to
theoretical calculations in the framework of EDF theory plus QPM approach and
systematically analyzed for isotones. In addition, negative parities for
two states in Ca were deduced simultaneously.
Conclusions: The experimental findings together with the theoretical
calculations support the two-phonon character of the excitation in the
light-to-medium-mass nucleus Ca as well as in the stable even-even
nuclei.Comment: 11 pages, 6 figures, as accepted in Phys. Rev.
Measurement of the 187Re({\alpha},n)190Ir reaction cross section at sub-Coulomb energies using the Cologne Clover Counting Setup
Uncertainties in adopted models of particle+nucleus optical-model potentials
directly influence the accuracy in the theoretical predictions of reaction
rates as they are needed for reaction-network calculations in, for instance,
{\gamma}-process nucleosynthesis. The improvement of the {\alpha}+nucleus
optical-model potential is hampered by the lack of experimental data at
astrophysically relevant energies especially for heavier nuclei. Measuring the
Re187({\alpha},n)Ir190 reaction cross section at sub-Coulomb energies extends
the scarce experimental data available in this mass region and helps
understanding the energy dependence of the imaginary part of the
{\alpha}+nucleus optical-model potential at low energies. Applying the
activation method, after the irradiation of natural rhenium targets with
{\alpha}-particle energies of 12.4 to 14.1 MeV, the reaction yield and thus the
reaction cross section were determined via {\gamma}-ray spectroscopy by using
the Cologne Clover Counting Setup and the method of {\gamma}{\gamma}
coincidences. Cross-section values at five energies close to the
astrophysically relevant energy region were measured. Statistical model
calculations revealed discrepancies between the experimental values and
predictions based on widely used {\alpha}+nucleus optical-model potentials.
However, an excellent reproduction of the measured cross-section values could
be achieved from calculations based on the so-called Sauerwein-Rauscher
{\alpha}+nucleus optical-model potential. The results obtained indicate that
the energy dependence of the imaginary part of the {\alpha}+nucleus
optical-model potential can be described by an exponential decrease. Successful
reproductions of measured cross sections at low energies for {\alpha}-induced
reactions in the mass range 141{\leq}A{\leq}187 confirm the global character of
the Sauerwein-Rauscher potential
- …