6 research outputs found
The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations
The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations
Structural, electronic and magnetic properties of a Mn monolayer on W(110)
In this paper we establish a monolayer of Mn on W(110) as a model system for two-dimensional itinerant antiferromagnetism. Combining scanning tunneling microscopy (STM), low-energy electron diffraction, and ab initio calculations performed with the full-potential linearized augmented plane wave method we have studied the structural, electronic, and magnetic properties of a Mn monolayer on W(110). Our experimental results indicate that in spite of the huge tensile strain Mn grows pseudomorphically on W(110) up to a thickness of three monolayers. Intermixing between the Mn overlayer and the W substrate can be excluded. Using these structural data as a starting point for the ab initio calculations of one monolayer Mn on W(110) we conclude that (i) Mn is magnetic and exhibits a large magnetic moment of 3.32mu(B), (ii) the magnetic moments are arranged in a c(2x2) antiferromagnetic order, (iii) the easy axis of the magnetization is in plane and points along the [1 (1) over bar0] direction, i.e., the direction along the long side of the (110) surface unit cell with a magnetocrystalline anisotropy energy of 1.3-1.5 meV, and (iv) the Mn-W interlayer distance is 2.14 Angstrom. The calculated electronic structure of a Mn monolayer on W(110) is compared with experimental scanning tunneling spectroscopy results. Several aspects are in nice agreement, but one cannot unambiguously deduce the magnetic structure from such a comparison. The proposed two-dimensional antiferromagnetic ground state of a Mn monolayer on W(110) is directly verified by the use of spin-polarized STM (SP-STM) in the constant-current mode, and an in-plane easy magnetization axis could be confirmed using tips with different magnetization directions. We compare the measurements with theoretically determined SP-STM images calculated combining the Tersoff-Hamann model extended to SP-STM with the ab initio calculation, resulting in good agreement
The OpenMolcas <i>Web</i>: A Community-Driven Approach to Advancing Computational Chemistry
The developments of the open-source Open-Molcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations
The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry
In this article the recent developments of the open-source OpenMolcas chemistry software environment, since spring 2020, are described, with the main focus on novel functionalities that are accessible in the stable branch of the package and/or via interfaces with other packages. These community developments span a wide range of topics in computational chemistry, and are presented in thematic sections associated with electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report represents a useful summary of these developments, and it offers a solid overview of the chemical phenomena and processes that OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations