174 research outputs found

    Duality between Wilson Loops and Scattering Amplitudes

    Full text link
    We summarise the status of an intriguing new duality between planar maximally helicity violating scattering amplitudes and light-like Wilson loops in N=4 super Yang-Mills. In particular, we focus on the role played by (dual) conformal symmetry, which is made predictive by deriving anomalous conformal Ward identities for the Wilson loops. Assuming the duality, the conformal symmetry of the dual Wilson loops becomes an unexpected new symmetry of scattering amplitudes in N=4 SYM.Comment: 10 pages; Presented at the 48th Cracow School of Theoretical Physics "Aspects of Duality"; Acknowledgement adde

    Four-gluon scattering at three loops, infrared structure and Regge limit

    Full text link
    We compute the three-loop four-gluon scattering amplitude in maximally supersymmetric Yang-Mills theory, including its full color dependence. Our result is the first complete computation of a non-planar four-particle scattering amplitude to three loops in four-dimensional gauge theory and consequently provides highly non-trivial data for the study of non-planar scattering amplitudes. We present the amplitude as a Laurent expansion in the dimensional regulator to finite order, with coefficients composed of harmonic poly-logarithms of uniform transcendental weight, and simple rational prefactors. Our computation provides an independent check of a recent result for three-loop corrections to the soft anomalous dimension matrix that predicts the general infrared singularity structure of massless gauge theory scattering amplitudes. Taking the Regge limit of our result, we determine the three-loop gluon Regge trajectory. We also find agreement with very recent predictions for sub-leading logarithms

    On the Casimir scaling violation in the cusp anomalous dimension at small angle

    Full text link
    We compute the four-loop nfn_f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle Ï•\phi. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to O(Ï•4){\mathcal O}(\phi^4). One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.Comment: 13 pages, 2 figures, 1 ancillary file; v2: journal versio

    Solvable Relativistic Hydrogenlike System in Supersymmetric Yang-Mills Theory

    Full text link
    The classical Kepler problem, as well as its quantum mechanical version, the Hydrogen atom, enjoy a well-known hidden symmetry, the conservation of the Laplace-Runge-Lenz vector, which makes these problems superintegrable. Is there a relativistic quantum field theory extension that preserves this symmetry? In this Letter we show that the answer is positive: in the non-relativistic limit, we identify the dual conformal symmetry of planar N=4\mathcal{N}=4 super Yang-Mills with the well-known symmetries of the Hydrogen atom. We point out that the dual conformal symmetry offers a novel way to compute the spectrum of bound states of massive WW bosons in the theory. We perform nontrivial tests of this setup at weak and strong coupling, and comment on the possible extension to arbitrary values of the coupling.Comment: 4 pages, 3 figures. Clarifications added; published versio

    Bootstrapping pentagon functions

    Full text link
    In PRL 116 (2016) no.6, 062001, the space of planar pentagon functions that describes all two-loop on-shell five-particle scattering amplitudes was introduced. In the present paper we present a natural extension of this space to non-planar pentagon functions. This provides the basis for our pentagon bootstrap program. We classify the relevant functions up to weight four, which is relevant for two-loop scattering amplitudes. We constrain the first entry of the symbol of the functions using information on branch cuts. Drawing on an analogy from the planar case, we introduce a conjectural second-entry condition on the symbol. We then show that the information on the function space, when complemented with some additional insights, can be used to efficiently bootstrap individual Feynman integrals. The extra information is read off of Mellin-Barnes representations of the integrals, either by evaluating simple asymptotic limits, or by taking discontinuities in the kinematic variables. We use this method to evaluate the symbols of two non-trivial non-planar five-particle integrals, up to and including the finite part.Comment: 24 pages + 3 pages of appendices, 2 figures, 3 tables, 4 ancillary files, added references and corrected typos, published versio
    • …
    corecore