35 research outputs found

    The effect of curvature and topology on membrane hydrodynamics

    Full text link
    We study the mobility of extended objects (rods) on a spherical liquid-liquid interface to show how this quantity is modified in a striking manner by both the curvature and the topology of the interface. We present theoretical calculations and experimental measurements of the interfacial fluid velocity field around a moving rod bound to the crowded interface of a water-in-oil droplet. By using different droplet sizes, membrane viscosities, and rod lengths, we show that the viscosity mismatch between the interior and exterior fluids leads to a suppression of the fluid flow on small droplets that cannot be captured by the flat interface predictions.Comment: 4 pages, 3 figure

    Measurement of red blood cell mechanics during morphological changes

    Get PDF
    The human red blood cell (RBC) membrane, a fluid lipid bilayer tethered to an elastic 2D spectrin network, provides the principal control of the cell's morphology and mechanics. These properties, in turn, influence the ability of RBCs to transport oxygen in circulation. Current mechanical measurements of RBCs rely on external loads. Here we apply a noncontact optical interferometric technique to quantify the thermal fluctuations of RBC membranes with 3 nm accuracy over a broad range of spatial and temporal frequencies. Combining this technique with a new mathematical model describing RBC membrane undulations, we measure the mechanical changes of RBCs as they undergo a transition from the normal discoid shape to the abnormal echinocyte and spherical shapes. These measurements indicate that, coincident with this morphological transition, there is a significant increase in the membrane's shear, area, and bending moduli. This mechanical transition can alter cell circulation and impede oxygen delivery. Keywords: membrane dynamics; microbiology; quantitative phase imagingNational Institutes of Health (U.S.) (Grant P41- RR02594-18)National Science Foundation (U.S.) (Grant CAREER 08-46660)National Science Foundation (U.S.) (Grant DMR-0907212
    corecore