909 research outputs found

    Aging and Holography

    Full text link
    Aging phenomena are examples of `non-equilibrium criticality' and can be exemplified by systems with Galilean and scaling symmetries but no time translation invariance. We realize aging holographically using a deformation of a non-relativistic version of gauge/gravity duality. Correlation functions of scalar operators are computed using holographic real-time techniques, and agree with field theory expectations. At least in this setup, general aging phenomena are reproduced holographically by complexifying the bulk space-time geometry, even in Lorentzian signature.Comment: 1 pdf figur

    Study of the filamentary infrared dark cloud G192.76+00.10 in the S254-S258 OB complex

    Full text link
    We present results of a high resolution study of the filamentary infrared dark cloud G192.76+00.10 in the S254-S258 OB complex in several molecular species tracing different physical conditions. These include three isotopologues of carbon monoxide (CO), ammonia (NH3_3), carbon monosulfide (CS). The aim of this work is to study the general structure and kinematics of the filamentary cloud, its fragmentation and physical parameters. The gas temperature is derived from the NH3_3 (J,K)=(1,1),(2,2)(J,K) = (1,1), (2,2) and 12^{12}CO(2--1) lines and the 13^{13}CO(1--0), 13^{13}CO(2--1) emission is used to investigate the overall gas distribution and kinematics. Several dense clumps are identified from the CS(2--1) data. Values of the gas temperature lie in the ranges 103510-35 K, column density N(H2)N(\mathrm{H}_2) reaches the value 5.1 1022^{22} cm2^{-2}. The width of the filament is of order 1 pc. The masses of the dense clumps range from 30 \sim 30 M_\odot to 160 \sim 160 M_\odot. They appear to be gravitationally unstable. The molecular emission shows a gas dynamical coherence along the filament. The velocity pattern may indicate longitudinal collapse.Comment: 10 pages, 9 figures, accepted for publication in Research in Astronomy and Astrophysic

    The clinical application of a new synthetic bone grafting material in oral and maxillofacial surgery

    Get PDF
    A novel bone formation material based on hydroxyapatite-xerogel is presented. With the use of the innovative sol-gel technology this material is produced in the low-temperature range by the addition of silicon dioxide; in its structure it mimics to a great extent the natural bone matrix. This results in high osteoconductivity and an osteoprotective effect as well as in complete biodegradation corresponding to bone formation in the course of natural bone remodelling. Two case reports are presented

    The lifespan method as a tool to study criticality in absorbing-state phase transitions

    Get PDF
    In a recent work, a new numerical method (the lifespan method) has been introduced to study the critical properties of epidemic processes on complex networks [Phys. Rev. Lett. \textbf{111}, 068701 (2013)]. Here, we present a detailed analysis of the viability of this method for the study of the critical properties of generic absorbing-state phase transitions in lattices. Focusing on the well understood case of the contact process, we develop a finite-size scaling theory to measure the critical point and its associated critical exponents. We show the validity of the method by studying numerically the contact process on a one-dimensional lattice and comparing the findings of the lifespan method with the standard quasi-stationary method. We find that the lifespan method gives results that are perfectly compatible with those of quasi-stationary simulations and with analytical results. Our observations confirm that the lifespan method is a fully legitimate tool for the study of the critical properties of absorbing phase transitions in regular lattices

    A Search for OH Megamasers at z > 0.1. III. The Complete Survey

    Full text link
    We present the final results from the Arecibo Observatory OH megamaser survey. We discuss in detail the properties of the remaining 18 OH megamasers detected in the survey, including 3 redetections. We place upper limits on the OH emission from 85 nondetections and examine the properties of 25 ambiguous cases for which the presence or absence of OH emission could not be determined. The complete survey has discovered 50 new OH megamasers (OHMs) in (ultra)luminous infrared galaxies ([U]LIRGs) which doubles the sample of known OHMs and increases the sample at z>0.1 sevenfold. The Arecibo OH megamaser survey indicates that the OHM fraction in LIRGs is an increasing function of the far-IR luminosity (L_{FIR}) and far-IR color, reaching a fraction of roughly one third in the warmest ULIRGs. Significant relationships between OHMs and their hosts are few, primarily due to a mismatch in size scales of measured properties and an intrinsic scatter in OHM properties roughly equal to the span of the dataset. We investigate relationships between OHMs and their hosts with a variety of statistical tools including survival analysis, partial correlation coefficients, and a principal component analysis. There is no apparent OH megamaser ``fundamental plane.'' We compile data on all previously known OHMs and evaluate the possible mechanisms and relationships responsible for OHM production in merging systems. The OH-FIR relationship is reexamined using the doubled OHM sample and found to be significantly flatter than previously thought: L_{OH} ~ L_{FIR}^{1.2 +/- 0.1}. This near-linear dependence suggests a mixture of saturated and unsaturated masers, either within individual galaxies or across the sample.Comment: 28 pages, 14 figures, accepted by AJ. (AASTeX, includes emulateapj5 and onecolfloat5

    The manufacture of synthetic non-sintered and degradable bone grafting substitutes

    Get PDF
    A new synthetic bone grafting substitute (NanoBone®, ARTOSS GmbH, Germany) is presented. This is produced by a new technique, the sol-gel-method. This bone grafting substitute consists of nanocrystalline hydroxyapatite (HA) and nanostructured silica (SiO2). By achieving a highly porous structure good osteoconductivity can be seen. In addition, the material will be completely biodegraded and new own bone is formed. It has been demonstrated that NanoBone® is biodegraded by osteoclasts in a manner comparable to the natural bone remodelling process

    Scaling Limit of the Ising Model in a Field

    Get PDF
    The dilute A_3 model is a solvable IRF (interaction round a face) model with three local states and adjacency conditions encoded by the Dynkin diagram of the Lie algebra A_3. It can be regarded as a solvable version of an Ising model at the critical temperature in a magnetic field. One therefore expects the scaling limit to be governed by Zamolodchikov's integrable perturbation of the c=1/2 conformal field theory. Indeed, a recent thermodynamic Bethe Ansatz approach succeeded to unveil the corresponding E_8 structure under certain assumptions on the nature of the Bethe Ansatz solutions. In order to check these conjectures, we perform a detailed numerical investigation of the solutions of the Bethe Ansatz equations for the critical and off-critical model. Scaling functions for the ground-state corrections and for the lowest spectral gaps are obtained, which give very precise numerical results for the lowest mass ratios in the massive scaling limit. While these agree perfectly with the E_8 mass ratios, we observe one state which seems to violate the assumptions underlying the thermodynamic Bethe Ansatz calculation. We also analyze the critical spectrum of the dilute A_3 model, which exhibits massive excitations on top of the massless states of the Ising conformal field theory.Comment: 29 pages, RevTeX, 11 PostScript figures included by epsf, using amssymb.sty (v2.2

    Mass resolution optimization in a large isotopic composition experiment

    Get PDF
    A range-energy experiment was built to measure the isotopic composition of galactic cosmic rays. An enrichment of neutron rich isotopes, 22Ne and (25Mg + 26Mg) in particular, when compared to the solar composition is shown. A rich statistics measurement of these and other neutron-rich isotopes in the galactic flux yields information to the source of these particles. A computer simulation of the experiment was used to estimate the instrument resolution. The Cherenkov detector light collection efficiency, was calculated. Absorption of light in the radiator was considered to determine the optimum Cherenkov medium thickness. The experiment will determine the isotopic composition for the elements neon through argon in the energy range 300 to 800 MeV per nucleon

    Aging Logarithmic Conformal Field Theory : a holographic view

    Full text link
    We consider logarithmic extensions of the correlation and response functions of scalar operators for the systems with aging as well as Schr\"odinger symmetry. Aging is known to be the simplest nonequilibrium phenomena, and its physical significances can be understood by the two-time correlation and response functions. Their logarithmic part is completely fixed by the bulk geometry in terms of the conformal weight of the dual operator and the dual particle number. Motivated by recent experimental realizations of Kardar-Parisi-Zhang universality class in growth phenomena and its subsequent theoretical extension to aging, we investigate our two-time correlation functions out of equilibrium, which show several qualitatively different behaviors depending on the parameters in our theory. They exhibit either growing or aging, i.e. power-law decaying, behaviors for the entire range of our scaling time. Surprisingly, for some parameter ranges, they exhibit growing at early times as well as aging at later times.Comment: 1+26 pages, 15 figure
    corecore