26 research outputs found

    Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode- no core-singlemode coupler for Staphylococcus aureus detection

    Get PDF
    An ultra-high sensitivity label-free optical fiber biosensor for inactivated Staphylococcus aureus (S. aureus) detection is proposed and investigated in this study, with additional advantages of robust and stability compared to traditional tapered fiber structure. The proposed fiber biosensor is based on a tapered singlemode- no core-singlemode fiber coupler (SNSFC) structure, where the no core fiber was tapered to small diameter (taper-waist diameter of about 10 µm) and functionalized with the pig immunoglobulin G (IgG) antibody for detection of S. aureus. The measured maximum wavelength shift of the sensor for an S. aureus concentration of 7 × 101 CFU/ml (colony forming unit per milliliter) is 2.04 nm, which is equivalent to a limit of detection (LOD) of 3.1 CFU/ml (a highest LOD reported so far for optical fiber biosensors), considering the maximum wavelength variation of the sensor in phosphate buffered saline (PBS) is ±0.03 nm over 40 minutes, where 3 times of maximum wavelength variation (3 × 0.03 = 0.09 nm) is defined as measurement limit. The response time of the developed fiber sensor is less than 30 minutes. The ultra-sensitive biosensor has potential to be widely applied to various areas such as disease, medical diagnostics and food safety inspection

    Ultrahigh-sensitivity label-free singlemode- tapered no core-singlemode fiber immunosensor for Listeria monocytogenes detection

    Get PDF
    A challenge for optical fiber biosensor is to achieve ultrahigh sensitivity with narrow full width at half maximum (FWHM) of the spectrum. To address this challenge, an ultrahigh-sensitivity microfiber interferometer fiber ring laser (FRL) biosensor is proposed and investigated for Listeria monocytogenes (L. monocytogenes) detection. The fiber biosensor is composed of a singlemode- tapered no core-singlemode (STNS) fiber configuration, which is functionalized with the anti-L. monocytogenes antibodies. An Erbium Doped Fiber Amplifier is applied to the sensor to excite laser and thus reduce the FWHM of the spectrum, which significantly improved the limit of detection (LoD). The proposed STNS FRL biosensor has excellent reproducibility, specificity and sensitivity for L. monocytogenes. The developed STNS FRL biosensor can directly detect L. monocytogenes cells with LoD as low as 1.0 cell/mL, indicating the capability for detecting single cell of L. monocytogenes. Real lettuce and milk samples have been tested and test result in lettuce and milk samples has deviations within ±30% from that of Phosphate-buffered saline (PBS) for L. monocytogenes concentrations vary from 101 to 103 cells/mL(g). The developed STNS FRL biosensor has ultrahigh sensitivity, good stability, reproducibility, and specificity, which has potential applications in diseases/medical diagnostics

    Sedimentology and accumulation rates of ODP Site 184-1143 in the South China Sea (Appendix B)

    No full text
    128 samples from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea were analyzed for grain size, clay minerals, biogenic opal content and quartz in order to reconstruct changes in East Asian monsoon climate since 8.5 Ma. An abrupt change of terrigenous mass accumulation rate (MAR), clay mineral assemblage, median grain size and biogenic opal MAR about 5.2 Ma suggests that between 8.5-5.2 Ma the source of terrigenous sediment was mainly in the region of surface uplift and basaltic volcanism in southern Vietnam. A simple model of East Asian summer monsoon evolution was based on the clay/feldspar ratio, kaolinite/chlorite ratio and biogenic opal MAR. The summer monsoon has two periods of maximum strength at 8.5-7.6 Ma and 7.1-6.2 Ma. Subsequently, there was a relatively stable period at 6.2-3.5 Ma, continued intensification about 3.5-2.5 Ma, and gradually weakening after 2.5 Ma. Since 1 Ma the monsoon has intensified, with remarkable high-frequency and amplitude variability. Simultaneous increase in sedimentation rates at ODP Sites 1143, 1146 and 1148, as well as in MAR of terrigenous materials, quartz, feldspar and clay minerals at ODP Site 1143 at 3.5-2.5 Ma, may be the erosional response to both global climatic deterioration and the strengthening of the East Asian summer monsoon after about 3-4 Ma

    Development of the East Asian summer monsoon: Evidence from the sediment record in the South China Sea since 8.5 Ma

    No full text
    128 samples from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea were analyzed for grain size, clay minerals, biogenic opal content and quartz in order to reconstruct changes in East Asian monsoon climate since 8.5 Ma. An abrupt change of terrigenous mass accumulation rate (MAR), clay mineral assemblage, median grain size and biogenic opal MAR about 5.2 Ma suggests that between 8.5-5.2 Ma the source of terrigenous sediment was mainly in the region of surface uplift and basaltic volcanism in southern Vietnam. A simple model of East Asian summer monsoon evolution was based on the clay/feldspar ratio, kaolinite/chlorite ratio and biogenic opal MAR. The summer monsoon has two periods of maximum strength at 8.5-7.6 Ma and 7.1-6.2 Ma. Subsequently, there was a relatively stable period at 6.2-3.5 Ma, continued intensification about 3.5-2.5 Ma, and gradually weakening after 2.5 Ma. Since 1 Ma the monsoon has intensified, with remarkable high-frequency and amplitude variability. Simultaneous increase in sedimentation rates at ODP Sites 1143, 1146 and 1148, as well as in MAR of terrigenous materials, quartz, feldspar and clay minerals at ODP Site 1143 at 3.5-2.5 Ma, may be the erosional response to both global climatic deterioration and the strengthening of the East Asian summer monsoon after about 3-4 Ma. © 2006 Elsevier B.V. All rights reserved

    A High-Power Density DC Converter for Medium-Voltage DC Distribution Networks

    No full text
    A DC converter is the core equipment of voltage conversion and power distribution in a DC distribution network. Its operating characteristics have a profound impact on the flexible regulation of distributed resources in an active distribution network. It is challenging for the existing single-stage conversion topology to meet the requirements of distributed renewable energy connected to a multi-voltage level, medium-voltage grid. It is necessary to study the multistage transform power unit topology further, which can satisfy high reliability, high efficiency, and wide input range. This paper proposes a high-power density DC converter for medium-voltage DC networks with wide voltage levels. It adopts Buck-LLC integrated modular composition. The input ends of the high isolation resonant power unit are connected in series to provide high voltage endurance, and the output ends are connected in parallel to meet the high-power demand and achieve high-power transmission efficiency. The proposed series dual Buck-LLC resonant power unit topology can adjust the duty cycle of series dual buck circuits to meet the needs of different levels of medium-voltage DC power grids. The soft switching problem within the wide input range of all switching tubes is solved by introducing auxiliary inductors, thereby improving energy transmission efficiency. The auxiliary circuit and control parameters are optimized based on the research of each switching tube’s soft switching boundary conditions. Finally, an experimental prototype of a 6.25~7 kW power unit is designed and developed to prove the proposed topology’s feasibility and effectiveness. Great breakthroughs have been made both in theoretical research and engineering prototype development

    Electric-Driven Polarization Meta-Optics for Tunable Edge-Enhanced Images

    No full text
    In this study, we demonstrate an electrically driven, polarization-controlled metadevice to achieve tunable edge-enhanced images. The metadevice was elaborately designed by integrating single-layer metalens with a liquid-crystal plate to control the incident polarization. By modulating electric-driven voltages applied on the liquid-crystal plate, the metalens can provide two polarization-dependent phase profiles (hyperbolic phase and focusing spiral phase). Therefore, the metalens can perform two-dimensional focusing and spatial differential operation on an incident optical field, allowing dynamic switching between the bright-field imaging and the edge-enhanced imaging. Capitalizing on the compactness and dynamic tuning of the proposed metadevice, our scheme carves a promising path to image processing and biomedical imaging technology

    Electric-Driven Polarization Meta-Optics for Tunable Edge-Enhanced Images

    No full text
    In this study, we demonstrate an electrically driven, polarization-controlled metadevice to achieve tunable edge-enhanced images. The metadevice was elaborately designed by integrating single-layer metalens with a liquid-crystal plate to control the incident polarization. By modulating electric-driven voltages applied on the liquid-crystal plate, the metalens can provide two polarization-dependent phase profiles (hyperbolic phase and focusing spiral phase). Therefore, the metalens can perform two-dimensional focusing and spatial differential operation on an incident optical field, allowing dynamic switching between the bright-field imaging and the edge-enhanced imaging. Capitalizing on the compactness and dynamic tuning of the proposed metadevice, our scheme carves a promising path to image processing and biomedical imaging technology

    Advances in Meta-Optics and Metasurfaces: Fundamentals and Applications

    No full text
    Meta-optics based on metasurfaces that interact strongly with light has been an active area of research in recent years. The development of meta-optics has always been driven by human’s pursuits of the ultimate miniaturization of optical elements, on-demand design and control of light beams, and processing hidden modalities of light. Underpinned by meta-optical physics, meta-optical devices have produced potentially disruptive applications in light manipulation and ultra-light optics. Among them, optical metalens are most fundamental and prominent meta-devices, owing to their powerful abilities in advanced imaging and image processing, and their novel functionalities in light manipulation. This review focuses on recent advances in the fundamentals and applications of the field defined by excavating new optical physics and breaking the limitations of light manipulation. In addition, we have deeply explored the metalenses and metalens-based devices with novel functionalities, and their applications in computational imaging and image processing. We also provide an outlook on this active field in the end

    The neural mechanisms of immediate and follow-up of the treatment effect of hypnosis on smoking craving

    No full text
    Hypnosis has a therapeutic effect on substance dependence. However, its neural basis remains unclear, which impedes its further clinical applications. This study investigated the mechanisms of smoking treatment based on hypnosis from two perspectives: immediate and follow-up effects. Twenty-four smokers screened from 132 volunteers underwent hypnosis suggestion and performed a smoking-related cue task twice during functional magnetic resonance imaging (fMRI) scanning (in normal and hypnotic states). The number of cigarettes smoked per day was recorded at follow-up visits.The smokers reported decreased craving after hypnosis. The activations in the right dorsal lateral prefrontal cortex (rDLPFC), the left insula and the right middle frontal gyrus (rMFG), and the functional connectivity between the rDLPFC and the left insula were increased in the hypnotic state. The reduced craving was related to the DLPFC-insula network, which reflected the immediate mechanism of hypnosis on smoking. The number of cigarette use at the 1-week and 1 month follow-up was correlated with the rMFG activation which reflecting hypnotic depth, suggesting the follow-up effect of hypnosis on smoking depended on the trait of smokers. We identified two different mechanisms of hypnosis effect on smoking, which have important implications for design and optimization of hypnotic treatments on mental disorders.</p
    corecore