16 research outputs found

    Memory Consistency Guided Divide-and-Conquer Learning for Generalized Category Discovery

    Full text link
    Generalized category discovery (GCD) aims at addressing a more realistic and challenging setting of semi-supervised learning, where only part of the category labels are assigned to certain training samples. Previous methods generally employ naive contrastive learning or unsupervised clustering scheme for all the samples. Nevertheless, they usually ignore the inherent critical information within the historical predictions of the model being trained. Specifically, we empirically reveal that a significant number of salient unlabeled samples yield consistent historical predictions corresponding to their ground truth category. From this observation, we propose a Memory Consistency guided Divide-and-conquer Learning framework (MCDL). In this framework, we introduce two memory banks to record historical prediction of unlabeled data, which are exploited to measure the credibility of each sample in terms of its prediction consistency. With the guidance of credibility, we can design a divide-and-conquer learning strategy to fully utilize the discriminative information of unlabeled data while alleviating the negative influence of noisy labels. Extensive experimental results on multiple benchmarks demonstrate the generality and superiority of our method, where our method outperforms state-of-the-art models by a large margin on both seen and unseen classes of the generic image recognition and challenging semantic shift settings (i.e.,with +8.4% gain on CUB and +8.1% on Standford Cars)

    Generalized Few-shot Semantic Segmentation

    Full text link
    Training semantic segmentation models requires a large amount of finely annotated data, making it hard to quickly adapt to novel classes not satisfying this condition. Few-Shot Segmentation (FS-Seg) tackles this problem with many constraints. In this paper, we introduce a new benchmark, called Generalized Few-Shot Semantic Segmentation (GFS-Seg), to analyze the generalization ability of simultaneously segmenting the novel categories with very few examples and the base categories with sufficient examples. It is the first study showing that previous representative state-of-the-art FS-Seg methods fall short in GFS-Seg and the performance discrepancy mainly comes from the constrained setting of FS-Seg. To make GFS-Seg tractable, we set up a GFS-Seg baseline that achieves decent performance without structural change on the original model. Then, since context is essential for semantic segmentation, we propose the Context-Aware Prototype Learning (CAPL) that significantly improves performance by 1) leveraging the co-occurrence prior knowledge from support samples, and 2) dynamically enriching contextual information to the classifier, conditioned on the content of each query image. Both two contributions are experimentally shown to have substantial practical merit. Extensive experiments on Pascal-VOC and COCO manifest the effectiveness of CAPL, and CAPL generalizes well to FS-Seg by achieving competitive performance. Code will be made publicly available

    Region Refinement Network for Salient Object Detection

    Full text link
    Albeit intensively studied, false prediction and unclear boundaries are still major issues of salient object detection. In this paper, we propose a Region Refinement Network (RRN), which recurrently filters redundant information and explicitly models boundary information for saliency detection. Different from existing refinement methods, we propose a Region Refinement Module (RRM) that optimizes salient region prediction by incorporating supervised attention masks in the intermediate refinement stages. The module only brings a minor increase in model size and yet significantly reduces false predictions from the background. To further refine boundary areas, we propose a Boundary Refinement Loss (BRL) that adds extra supervision for better distinguishing foreground from background. BRL is parameter free and easy to train. We further observe that BRL helps retain the integrity in prediction by refining the boundary. Extensive experiments on saliency detection datasets show that our refinement module and loss bring significant improvement to the baseline and can be easily applied to different frameworks. We also demonstrate that our proposed model generalizes well to portrait segmentation and shadow detection tasks

    GroupContrast: Semantic-aware Self-supervised Representation Learning for 3D Understanding

    Full text link
    Self-supervised 3D representation learning aims to learn effective representations from large-scale unlabeled point clouds. Most existing approaches adopt point discrimination as the pretext task, which assigns matched points in two distinct views as positive pairs and unmatched points as negative pairs. However, this approach often results in semantically identical points having dissimilar representations, leading to a high number of false negatives and introducing a "semantic conflict" problem. To address this issue, we propose GroupContrast, a novel approach that combines segment grouping and semantic-aware contrastive learning. Segment grouping partitions points into semantically meaningful regions, which enhances semantic coherence and provides semantic guidance for the subsequent contrastive representation learning. Semantic-aware contrastive learning augments the semantic information extracted from segment grouping and helps to alleviate the issue of "semantic conflict". We conducted extensive experiments on multiple 3D scene understanding tasks. The results demonstrate that GroupContrast learns semantically meaningful representations and achieves promising transfer learning performance.Comment: CVPR 202

    VoxelFormer: Bird's-Eye-View Feature Generation based on Dual-view Attention for Multi-view 3D Object Detection

    Full text link
    In recent years, transformer-based detectors have demonstrated remarkable performance in 2D visual perception tasks. However, their performance in multi-view 3D object detection remains inferior to the state-of-the-art (SOTA) of convolutional neural network based detectors. In this work, we investigate this issue from the perspective of bird's-eye-view (BEV) feature generation. Specifically, we examine the BEV feature generation method employed by the transformer-based SOTA, BEVFormer, and identify its two limitations: (i) it only generates attention weights from BEV, which precludes the use of lidar points for supervision, and (ii) it aggregates camera view features to the BEV through deformable sampling, which only selects a small subset of features and fails to exploit all information. To overcome these limitations, we propose a novel BEV feature generation method, dual-view attention, which generates attention weights from both the BEV and camera view. This method encodes all camera features into the BEV feature. By combining dual-view attention with the BEVFormer architecture, we build a new detector named VoxelFormer. Extensive experiments are conducted on the nuScenes benchmark to verify the superiority of dual-view attention and VoxelForer. We observe that even only adopting 3 encoders and 1 historical frame during training, VoxelFormer still outperforms BEVFormer significantly. When trained in the same setting, VoxelFormer can surpass BEVFormer by 4.9% NDS point. Code is available at: https://github.com/Lizhuoling/VoxelFormer-public.git

    BT2BT^2: Backward-compatible Training with Basis Transformation

    Full text link
    Modern retrieval system often requires recomputing the representation of every piece of data in the gallery when updating to a better representation model. This process is known as backfilling and can be especially costly in the real world where the gallery often contains billions of samples. Recently, researchers have proposed the idea of Backward Compatible Training (BCT) where the new representation model can be trained with an auxiliary loss to make it backward compatible with the old representation. In this way, the new representation can be directly compared with the old representation, in principle avoiding the need for any backfilling. However, followup work shows that there is an inherent tradeoff where a backward compatible representation model cannot simultaneously maintain the performance of the new model itself. This paper reports our ``not-so-surprising'' finding that adding extra dimensions to the representation can help here. However, we also found that naively increasing the dimension of the representation did not work. To deal with this, we propose Backward-compatible Training with a novel Basis Transformation (BT2BT^2). A basis transformation (BT) is basically a learnable set of parameters that applies an orthonormal transformation. Such a transformation possesses an important property whereby the original information contained in its input is retained in its output. We show in this paper how a BT can be utilized to add only the necessary amount of additional dimensions. We empirically verify the advantage of BT2BT^2 over other state-of-the-art methods in a wide range of settings. We then further extend BT2BT^2 to other challenging yet more practical settings, including significant change in model architecture (CNN to Transformers), modality change, and even a series of updates in the model architecture mimicking the evolution of deep learning models.Comment: 13 pages, 2 figure

    DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model

    Full text link
    Multimodal large language models (MLLMs) have emerged as a prominent area of interest within the research community, given their proficiency in handling and reasoning with non-textual data, including images and videos. This study seeks to extend the application of MLLMs to the realm of autonomous driving by introducing DriveGPT4, a novel interpretable end-to-end autonomous driving system based on LLMs. Capable of processing multi-frame video inputs and textual queries, DriveGPT4 facilitates the interpretation of vehicle actions, offers pertinent reasoning, and effectively addresses a diverse range of questions posed by users. Furthermore, DriveGPT4 predicts low-level vehicle control signals in an end-to-end fashion. These advanced capabilities are achieved through the utilization of a bespoke visual instruction tuning dataset, specifically tailored for autonomous driving applications, in conjunction with a mix-finetuning training strategy. DriveGPT4 represents the pioneering effort to leverage LLMs for the development of an interpretable end-to-end autonomous driving solution. Evaluations conducted on the BDD-X dataset showcase the superior qualitative and quantitative performance of DriveGPT4. Additionally, the fine-tuning of domain-specific data enables DriveGPT4 to yield close or even improved results in terms of autonomous driving grounding when contrasted with GPT4-V. The code and dataset will be publicly available.Comment: The project page is available at https://tonyxuqaq.github.io/projects/DriveGPT4
    corecore