196 research outputs found

    Limited SHIV env diversification in macaques failing oral antiretroviral pre-exposure prophylaxis

    Get PDF
    BACKGROUND: Pre-exposure prophylaxis (PrEP) with daily Truvada [a combination of emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF)] is a novel HIV prevention strategy recently found to prevent HIV transmission among men who have sex with men and heterosexual couples. Acute infection in adherent persons who fail PrEP will inevitably occur under concurrent antiretroviral therapy, thus raising questions regarding the potential impact of PrEP on early viral dynamics. We investigated viral evolution dynamics in a macaque model of PrEP consisting of repeated rectal exposures to SHIV(162P3) in the presence of PrEP. RESULTS: Four macaques were infected during daily or intermittent PrEP with FTC or FTC/TDF, and five were untreated controls. SHIV env sequence evolution was monitored by single genome amplification with phylogenetic and sequence analysis. Mean nucleotide divergence from transmitted founder viruses calculated 17 weeks (range = 12–20) post peak viremia was significantly lower in PrEP failures than in control animals (7.2 × 10(-3) compared to 1.6 × 10(-2) nucleotide substitutions per site per year, respectively, p < 0.0001). Mean virus diversity was also lower in PrEP failures after 17 weeks (0.13% vs. 0.53% in controls, p < 0.0001). CONCLUSIONS: Our results in a macaque model of acute HIV infection suggest that infection during PrEP limits early virus evolution likely because of a direct antiviral effect of PrEP and/or reduced target cell availability. Reduced virus diversification during early infection might enhance immune control by slowing the selection of escape mutants

    Progressive myoclonus epilepsy KCNC1 variant causes a developmental dendritopathy

    Get PDF
    OBJECTIVE: Mutations in KCNC1 can cause severe neurological dysfunction, including intellectual disability, epilepsy, and ataxia. The Arg320His variant, which occurs in the voltage-sensing domain of the channel, causes a highly penetrant and specific form of progressive myoclonus epilepsy with severe ataxia, designated myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK). KCNC1 encodes the voltage-gated potassium channel KV 3.1, a channel that is important for enabling high-frequency firing in interneurons, raising the possibility that MEAK is associated with reduced interneuronal function. METHODS: To determine how this variant triggers MEAK, we expressed KV 3.1bR320H in cortical interneurons in vitro and investigated the effects on neuronal function and morphology. We also performed electrophysiological recordings of oocytes expressing KV 3.1b to determine whether the mutation introduces gating pore currents. RESULTS: Expression of the KV 3.1bR320H variant profoundly reduced excitability of mature cortical interneurons, and cells expressing these channels were unable to support high-frequency firing. The mutant channel also had an unexpected effect on morphology, severely impairing neurite development and interneuron viability, an effect that could not be rescued by blocking KV 3 channels. Oocyte recordings confirmed that in the adult KV 3.1b isoform, R320H confers a dominant negative loss-of-function effect by slowing channel activation, but does not introduce potentially toxic gating pore currents. SIGNIFICANCE: Overall, our data suggest that, in addition to the regulation of high-frequency firing, KV 3.1 channels play a hitherto unrecognized role in neuronal development. MEAK may be described as a developmental dendritopathy

    Sequential emergence and clinical implications of viral mutants with K70E and K65R mutation in reverse transcriptase during prolonged tenofovir monotherapy in rhesus macaques with chronic RT-SHIV infection.

    Get PDF
    BackgroundWe reported previously on the emergence and clinical implications of simian immunodeficiency virus (SIVmac251) mutants with a K65R mutation in reverse transcriptase (RT), and the role of CD8+ cell-mediated immune responses in suppressing viremia during tenofovir therapy. Because of significant sequence differences between SIV and HIV-1 RT that affect drug susceptibilities and mutational patterns, it is unclear to what extent findings with SIV can be extrapolated to HIV-1 RT. Accordingly, to model HIV-1 RT responses, 12 macaques were inoculated with RT-SHIV, a chimeric SIV containing HIV-1 RT, and started on prolonged tenofovir therapy 5 months later.ResultsThe early virologic response to tenofovir correlated with baseline viral RNA levels and expression of the MHC class I allele Mamu-A*01. For all animals, sensitive real-time PCR assays detected the transient emergence of K70E RT mutants within 4 weeks of therapy, which were then replaced by K65R mutants within 12 weeks of therapy. For most animals, the occurrence of these mutations preceded a partial rebound of plasma viremia to levels that remained on average 10-fold below baseline values. One animal eventually suppressed K65R viremia to undetectable levels for more than 4 years; sequential experiments using CD8+ cell depletion and tenofovir interruption demonstrated that both CD8+ cells and continued tenofovir therapy were required for sustained suppression of viremia.ConclusionThis is the first evidence that tenofovir therapy can select directly for K70E viral mutants in vivo. The observations on the clinical implications of the K65R RT-SHIV mutants were consistent with those of SIVmac251, and suggest that for persons infected with K65R HIV-1 both immune-mediated and drug-dependent antiviral activities play a role in controlling viremia. These findings suggest also that even in the presence of K65R virus, continuation of tenofovir treatment as part of HAART may be beneficial, particularly when assisted by antiviral immune responses

    T Cell Chemo-Vaccination Effects after Repeated Mucosal SHIV Exposures and Oral Pre-Exposure Prophylaxis

    Get PDF
    Pre-exposure prophylaxis (PrEP) with anti-viral drugs is currently in clinical trials for the prevention of HIV infection. Induction of adaptive immune responses to virus exposures during anti-viral drug administration, i.e., a “chemo-vaccination” effect, could contribute to PrEP efficacy. To study possible chemo-vaccination, we monitored humoral and cellular immune responses in nine rhesus macaques undergoing up to 14 weekly, low-dose SHIVSF162P3 rectal exposures. Six macaques concurrently received PrEP with intermittent, oral Truvada; three were no-PrEP controls. PrEP protected 4 macaques from infection. Two of the four showed evidence of chemo-vaccination, because they developed anti-SHIV CD4+ and CD8+ T cells; SHIV-specific antibodies were not detected. Control macaques showed no anti-SHIV immune responses before infection. Chemo-vaccination-induced T cell responses were robust (up to 3,940 SFU/106 PBMCs), predominantly central memory cells, short-lived (≤22 weeks), and appeared intermittently and with changing specificities. The two chemo-vaccinated macaques were virus-challenged again after 28 weeks of rest, after T cell responses had waned. One macaque was not protected from infection. The other macaque concurrently received additional PrEP. It remained uninfected and T cell responses were boosted during the additional virus exposures. In summary, we document and characterize PrEP-induced T cell chemo-vaccination. Although not protective after subsiding in one macaque, chemo-vaccination-induced T cells warrant more comprehensive analysis during peak responses for their ability to prevent or to control infections after additional exposures. Our findings highlight the importance of monitoring these responses in clinical PrEP trials and suggest that a combination of vaccines and PrEP potentially might enhance efficacy

    Introduction of HIV-2 and multiple HIV-1 subtypes to Lebanon.

    Get PDF
    HIV genetic variability, phylogenetic relationships, and transmission dynamics were analyzed in 26 HIV-infected patients from Lebanon. Twenty-five specimens were identified as HIV-1 and one as HIV-2 subtype B. The 25 strains were classified into six env-C2-V3 HIV-1 subtypes: B (n = 10), A (n = 11), C (n = 1), D (n = 1), G (n = 1), and unclassifiable. Potential recombinants combining parts of viral regions from different subtypes Aenv/Dpol/Agag, Genv/Apol, and the unclassifiable-subtype(env)/unclassifiable-subtype(pol)/Agag were found in three patients. Epidemiologic analysis of travel histories and behavioral risks indicated that HIV-1 and HIV-2 subtypes reflected HIV strains prevalent in countries visited by patients or their sex partners. Spread of complex HIV-subtype distribution patterns to regions where HIV is not endemic may be more common than previously thought. Blood screening for both HIV-1 and HIV-2 in Lebanon is recommended to protect the blood supply. HIV subtype data provide information for vaccine development

    Measuring Enzymatic HIV-1 Susceptibility to Two Reverse Transcriptase Inhibitors as a Rapid and Simple Approach to HIV-1 Drug-Resistance Testing

    Get PDF
    Simple and cost-effective approaches for HIV drug-resistance testing are highly desirable for managing increasingly expanding HIV-1 infected populations who initiate antiretroviral therapy (ART), particularly in resource-limited settings. Non-nucleoside reverse trancriptase inhibitor (NNRTI)-based regimens with an NRTI backbone containing lamivudine (3TC) or emtricitabine (FTC) are preferred first ART regimens. Failure with these drug combinations typically involves the selection of NNRTI- and/or 3TC/FTC- resistant viruses. Therefore, the availability of simple assays to measure both types of drug resistance is critical. We have developed a high throughput screening test for assessing enzymatic resistance of the HIV-1 RT in plasma to 3TC/FTC and NNRTIs. The test uses the sensitive “Amp-RT” assay with a newly-developed real-time PCR format to screen biochemically for drug resistance in single reactions containing either 3TC-triphosphate (3TC-TP) or nevirapine (NVP). Assay cut-offs were defined based on testing a large panel of subtype B and non-subtype B clinical samples with known genotypic profiles. Enzymatic 3TC resistance correlated well with the presence of M184I/V, and reduced NVP susceptibility was strongly associated with the presence of K103N, Y181C/I, Y188L, and G190A/Q. The sensitivity and specificity for detecting resistance were 97.0% and 96.0% in samples with M184V, and 97.4% and 96.2% for samples with NNRTI mutations, respectively. We further demonstrate the utility of an HIV capture method in plasma by using magnetic beads coated with CD44 antibody that eliminates the need for ultracentifugation. Thus our results support the use of this simple approach for distinguishing WT from NNRTI- or 3TC/FTC-resistant viruses in clinical samples. This enzymatic testing is subtype-independent and can assist in the clinical management of diverse populations particularly in resource-limited settings
    corecore