7 research outputs found

    Long-term survival of LGR5 expressing supporting cells after severe ototoxic trauma in the adult mouse cochlea

    Get PDF
    INTRODUCTION: The leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) is a tissue resident stem cell marker, which it is expressed in supporting cells (SCs) in the organ of Corti in the mammalian inner ear. These LGR5+ SCs can be used as an endogenous source of progenitor cells for regeneration of hair cells (HCs) to treat hearing loss and deafness. We have recently reported that LGR5+ SCs survive 1 week after ototoxic trauma. Here, we evaluated Lgr5 expression in the adult cochlea and long-term survival of LGR5+ SCs following severe hearing loss. METHODS: Lgr5GFP transgenic mice and wild type mice aged postnatal day 30 (P30) and P200 were used. P30 animals were deafened with a single dose of furosemide and kanamycin. Seven and 28 days after deafening, auditory brainstem responses (ABRs) were recorded. Cochleas were harvested to characterize mature HCs and LGR5+ SCs by immunofluorescence microscopy and quantitative reverse transcription PCR (q-RT-PCR). RESULTS: There were no significant age-related changes in Lgr5 expression when comparing normal-hearing (NH) mice aged P200 with P30. Seven and 28 days after ototoxic trauma, there was severe outer HC loss and LGR5 was expressed in the third row of Deiters' cells and in inner pillar cells. Seven days after induction of ototoxic trauma there was an up-regulation of the mRNA expression of Lgr5 compared to the NH condition; 28 days after ototoxic trauma Lgr5 expression was similar to NH levels. DISCUSSION: The presence of LGR5+ SCs in the adult mouse cochlea, which persists after severe HC loss, suggests potential regenerative capacity of endogenous cochlear progenitor cells in adulthood. To our knowledge, this is the first study showing not only long-term survival of LGR5+ SCs in the normal and ototoxically damaged cochlea, but also increased Lgr5 expression in the adult mouse cochlea after deafening, suggesting long-term availability of potential target cells for future regenerative therapies

    LGR5-Positive Supporting Cells Survive Ototoxic Trauma in the Adult Mouse Cochlea

    Get PDF
    Sensorineural hearing loss is mainly caused by irreversible damage to sensory hair cells (HCs). A subgroup of supporting cells (SCs) in the cochlea express leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker for tissue-resident stem cells. LGR5+ SCs could be used as an endogenous source of stem cells for regeneration of HCs to treat hearing loss. Here, we report long-term presence of LGR5+ SCs in the mature adult cochlea and survival of LGR5+ SCs after severe ototoxic trauma characterized by partial loss of inner HCs and complete loss of outer HCs. Surviving LGR5+ SCs (confirmed by GFP expression) were located in the third row of Deiters' cells. We observed a change in the intracellular localization of GFP, from the nucleus in normal-hearing to cytoplasm and membrane in deafened mice. These data suggests that the adult mammalian cochlea possesses properties essential for regeneration even after severe ototoxic trauma

    Degeneration of auditory nerve fibers in guinea pigs with severe sensorineural hearing loss

    No full text
    Damage to and loss of the organ of Corti leads to secondary degeneration of the spiral ganglion cell (SGC) somata of the auditory nerve. Extensively examined in animal models, this degeneration process of SGC somata following deafening is well known. However, degeneration of auditory nerve axons, which conduct auditory information towards the brainstem, and its relation to SGC soma degeneration are largely unknown. The consequences of degeneration of the axons are relevant for cochlear implantation, which is applied to a deafened system but depends on the condition of the auditory nerve. We investigated the time sequence of degeneration of myelinated type I axons in deafened guinea pigs. Auditory nerves in six normal-hearing and twelve deafened animals, two, six and fourteen weeks (for each group four) after deafening were histologically analyzed. We developed a semi-automated method for axon counting, which allowed for a relatively large sample size (20% of the total cross-sectional area of the auditory nerve). We observed a substantial loss of auditory nerve area (29%), reduction in axon number (59%) and decrease in axoplasm area (41%) fourteen weeks after deafening compared to normal-hearing controls. The correlation between axonal degeneration and that of the SGC somata in the same cochleas was high, although axonal structures appeared to persist longer than the somata, suggesting a slower degeneration process. In the first two weeks after induction of deafness, the axonal cross-sectional area decreased but the axon number did not. In conclusion, the data strongly suggest that each surviving SGC possesses an axon

    Degeneration of auditory nerve fibers in guinea pigs with severe sensorineural hearing loss

    No full text
    Damage to and loss of the organ of Corti leads to secondary degeneration of the spiral ganglion cell (SGC) somata of the auditory nerve. Extensively examined in animal models, this degeneration process of SGC somata following deafening is well known. However, degeneration of auditory nerve axons, which conduct auditory information towards the brainstem, and its relation to SGC soma degeneration are largely unknown. The consequences of degeneration of the axons are relevant for cochlear implantation, which is applied to a deafened system but depends on the condition of the auditory nerve. We investigated the time sequence of degeneration of myelinated type I axons in deafened guinea pigs. Auditory nerves in six normal-hearing and twelve deafened animals, two, six and fourteen weeks (for each group four) after deafening were histologically analyzed. We developed a semi-automated method for axon counting, which allowed for a relatively large sample size (20% of the total cross-sectional area of the auditory nerve). We observed a substantial loss of auditory nerve area (29%), reduction in axon number (59%) and decrease in axoplasm area (41%) fourteen weeks after deafening compared to normal-hearing controls. The correlation between axonal degeneration and that of the SGC somata in the same cochleas was high, although axonal structures appeared to persist longer than the somata, suggesting a slower degeneration process. In the first two weeks after induction of deafness, the axonal cross-sectional area decreased but the axon number did not. In conclusion, the data strongly suggest that each surviving SGC possesses an axon

    Ouabain Does Not Induce Selective Spiral Ganglion Cell Degeneration in Guinea Pigs

    No full text
    Round window membrane (RWM) application of ouabain is known to selectively destroy type I spiral ganglion cells (SGCs) in cochleas of several rodent species, while leaving hair cells intact. This protocol has been used in rats and Mongolian gerbils, but observations in the guinea pig are conflicting. This is why we reinvestigated the effect of ouabain on the guinea pig cochlea. Ouabain solutions of different concentrations were placed, in a piece of gelfoam, upon the RWM of the right cochleas. Auditory function was assessed using acoustically evoked auditory brainstem responses (aABR). Finally, cochleas were fixed and processed for histological examination. Due to variability within treatment groups, histological data was pooled and three categories based upon general histological observations were defined: cochleas without outer hair cell (OHC) and SGC loss (Category 1), cochleas with OHC loss only (Category 2), and cochleas with OHC and SGC loss (Category 3). Animals treated with 1 mM or 10 mM ouabain showed shifts in hearing thresholds, corresponding with varying histological changes in their cochleas. Most cochleas exhibited complete outer hair cell loss in the basal and middle turns, while some had no changes, together with either moderate or near-complete loss of SGCs. Neither loss of inner hair cells nor histological changes of the stria vascularis were observed in any of the animals. Cochleas in Category 1 had normal aABRs and morphology. On average, in Category 2 OHC loss was 46.0±5.7%, SGC loss was below threshold, ABR threshold shift was 44.9±2.7 dB, and ABR wave II amplitude was decreased by 17.1±3.8 dB. In Category 3 OHC loss was 68.3±6.9%, SGC loss was 49.4±4.3%, ABR threshold shift was 39.0±2.4 dB, and ABR amplitude was decreased by 15.8±1.6 dB. Our results show that ouabain does not solely destroy type I SGCs in the guinea pig cochlea

    Lithographic Techniques in Nanocatalysis

    No full text
    corecore