3 research outputs found

    Preeclampsia is Associated with lower Percentages of Regulatory T Cells in Maternal Blood

    Get PDF
    Objective: Immunological mechanisms are involved in the pathophysiology of preeclampsia. During pregnancy there is an increase in regulatory T (Treg) cells, which has an important role in regulating tolerance to the immunologically distinct fetus. We hypothesised that percentages of Treg cells are decreased in preeclamptic patients. Methods: Peripheral blood was obtained from 26 healthy pregnant controls and 18 preeclamptic patients. Treg cells were measured using flow-cytometry. Results: Women with pregnancies complicated by preeclampsia had significantly lower percentages of CD4(+)FOXP3(+) Treg cells. Conclusion: We conclude that a deficiency of regulatory T cells may play a role in the pathophysiology of preeclampsia

    WeNMR: Structural Biology on the Grid

    Get PDF
    International audienceThe WeNMR (http://www.wenmr.eu) project is a European Union funded international effort to streamline and automate analysis of Nuclear Magnetic Resonance (NMR) and Small Angle X-Ray scattering (SAXS) imaging data for atomic and near-atomic resolution molecular structures. Conventional calculation of structure requires the use of various software packages, considerable user expertise and ample computational resources. To facilitate the use of NMR spectroscopy and SAXS in life sciences the WeNMR consortium has established standard computational workflows and services through easy-to-use web interfaces, while still retaining sufficient flexibility to handle more specific requests. Thus far, a number of programs often used in structural biology have been made available through application portals. The implementation of these services, in particular the distribution of calculations to a Grid computing infrastructure, involves a novel mechanism for submission and handling of jobs that is independent of the type of job being run. With over 450 registered users (September 2012), WeNMR is currently the largest Virtual Organization (VO) in life sciences. With its large and worldwide user community, WeNMR has become the first Virtual Research Community officially recognized by the European Grid Infrastructure (EGI)
    corecore