521 research outputs found

    Structural predictions for the ligand-binding region of glycoprotein hormone receptors and the nature of hormone–receptor interactions

    Get PDF
    AbstractBackground: Glycoprotein hormones influence the development and function of the ovary, testis and thyroid by binding to specific high-affinity receptors. The extracellular domains of these receptors are members of the leucine-rich repeat (LRR) protein superfamily and are responsible for the high-affinity binding. The crystal structure of a glycoprotein hormone, namely human choriogonadotropin (hCG), is known, but neither the receptor structure, mode of hormone binding, nor mechanism for activation, have been established.Results Despite very low sequence similarity between exon-demarcated LRRs in the receptors and the LRRs of porcine ribonuclease inhibitor (RI), the secondary structures for the two repeat sets are found to be alike. Constraints on curvature and β-barrel geometry from the sequence pattern for repeated βα units suggest that the receptors contain three-dimensional structures similar to that of RI. With the RI crystal structure as a template, models were constructed for exons 2–8 of the receptors. The model for this portion of the choriogonadotropin receptor is complementary in shape and electrostatic characteristics to the surface of hCG at an identified focus of hormone–receptor interaction.Conclusion The predicted models for the structures and mode of hormone binding of the glycoprotein hormone receptors are to a large extent consistent with currently available biochemical and mutational data. Repeated sequences in β-barrel proteins are shown to have general implications for constraints on structure. Averaging techniques used here to recognize the structural motif in these receptors should also apply to other proteins with repeated sequences

    Co-evolution of segregation guide DNA motifs and the FtsK translocase in bacteria: identification of the atypical Lactococcus lactis KOPS motif

    Get PDF
    Bacteria use the global bipolarization of their chromosomes into replichores to control the dynamics and segregation of their genome during the cell cycle. This involves the control of protein activities by recognition of specific short DNA motifs whose orientation along the chromosome is highly skewed. The KOPS motifs act in chromosome segregation by orienting the activity of the FtsK DNA translocase towards the terminal replichore junction. KOPS motifs have been identified in γ-Proteobacteria and in Bacillus subtilis as closely related G-rich octamers. We have identified the KOPS motif of Lactococcus lactis, a model bacteria of the Streptococcaceae family harbouring a compact and low GC% genome. This motif, 5′-GAAGAAG-3, was predicted in silico using the occurrence and skew characteristics of known KOPS motifs. We show that it is specifically recognized by L. lactis FtsK in vitro and controls its activity in vivo. L. lactis KOPS is thus an A-rich heptamer motif. Our results show that KOPS-controlled chromosome segregation is conserved in Streptococcaceae but that KOPS may show important variation in sequence and length between bacterial families. This suggests that FtsK adapts to its host genome by selecting motifs with convenient occurrence frequencies and orientation skews to orient its activity

    Bioactive (3Z,5E)-11,20-Epoxybriara-3,5-dien-7,18-olide Diterpenoids from the South China Sea Gorgonian Dichotella gemmacea

    Get PDF
    Six new (3Z,5E)-11,20-epoxybriara-3,5-dien-7,18-olide diterpenoids, gemmacolides N–S (1–6), were isolated together with four known analogues, juncenolide D, and juncins R, S and U (7–10), from the South China Sea gorgonian Dichotella gemmacea. The structures of the new compounds were elucidated by the detailed analysis of spectroscopic data in combination with the comparison with reported data. The absolute configuration of 1 was determined by a TDDFT calculation of its solution ECD spectrum, affording the determination of absolute configuration of other analogues by simply comparing their ECD spectra with that of 1. The cytotoxic and antimicrobial activities of these compounds were evaluated. In preliminary in vitro bioassays, compounds 4, 5, 6, 8 and 9 showed cytotoxicity against A549 and MG63, while compounds 1, 2, 4, 7–10 showed antimicrobial activity against the fungus Septoria tritici and the bacterium Escherichia coli

    Dithiooxamide Modified Glassy Carbon Electrode for the Studies of Non-Aqueous Media: Electrochemical Behaviors of Quercetin on the Electrode Surface

    Get PDF
    Electrochemical oxidation of quercetin, as an important biological molecule, has been studied in non-aqueous media using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. To investigate the electrochemical properties of quercetin, an important flavonoid derivative, on a different surface, a new glassy carbon electrode has been developed using dithiooxamide as modifier in non-aqueous media. The surface modification of glassy carbon electrode has been performed within the 0.0 mV and +800 mV potential range with 20 cycles using 1 mM dithioxamide solution in acetonitrile. However, the modification of quercetin to both bare glassy carbon and dithiooxamide modified glassy carbon electrode surface was carried out in a wide +300 mV and +2,800 mV potential range with 10 cycles. Following the modification process, cyclic voltammetry has been used for the surface characterization in aqueous and non-aqueous media whereas electrochemical impedance spectroscopy has been used in aqueous media. Scanning electron microscopy has also been used to support the surface analysis. The obtained data from the characterization and modification studies of dithioxamide modified and quercetin grafted glassy carbon electrode showed that the developed electrode can be used for the quantitative determination of quercetin and antioxidant capacity determination as a chemical sensor electrode

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    Significance analysis of microarray for relative quantitation of LC/MS data in proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although fold change is a commonly used criterion in quantitative proteomics for differentiating regulated proteins, it does not provide an estimation of false positive and false negative rates that is often desirable in a large-scale quantitative proteomic analysis. We explore the possibility of applying the Significance Analysis of Microarray (SAM) method (PNAS 98:5116-5121) to a differential proteomics problem of two samples with replicates. The quantitative proteomic analysis was carried out with nanoliquid chromatography/linear iron trap-Fourier transform mass spectrometry. The biological sample model included two <it>Mycobacterium smegmatis </it>unlabeled cell cultures grown at pH 5 and pH 7. The objective was to compare the protein relative abundance between the two unlabeled cell cultures, with an emphasis on significance analysis of protein differential expression using the SAM method. Results using the SAM method are compared with those obtained by fold change and the conventional <it>t</it>-test.</p> <p>Results</p> <p>We have applied the SAM method to solve the two-sample significance analysis problem in liquid chromatography/mass spectrometry (LC/MS) based quantitative proteomics. We grew the pH5 and pH7 unlabelled cell cultures in triplicate resulting in 6 biological replicates. Each biological replicate was mixed with a common <sup>15</sup>N-labeled reference culture cells for normalization prior to SDS/PAGE fractionation and LC/MS analysis. For each biological replicate, one center SDS/PAGE gel fraction was selected for triplicate LC/MS analysis. There were 121 proteins quantified in at least 5 of the 6 biological replicates. Of these 121 proteins, 106 were significant in differential expression by the <it>t</it>-test (<it>p </it>< 0.05) based on peptide-level replicates, 54 were significant in differential expression by SAM with Δ = 0.68 cutoff and false positive rate at 5%, and 29 were significant in differential expression by the <it>t</it>-test (<it>p </it>< 0.05) based on protein-level replicates. The results indicate that SAM appears to overcome the false positives one encounters using the peptide-based <it>t</it>-test while allowing for identification of a greater number of differentially expressed proteins than the protein-based <it>t</it>-test.</p> <p>Conclusion</p> <p>We demonstrate that the SAM method can be adapted for effective significance analysis of proteomic data. It provides much richer information about the protein differential expression profiles and is particularly useful in the estimation of false discovery rates and miss rates.</p

    Biomarkers for Clinical and Incipient Tuberculosis: Performance in a TB-Endemic Country

    Get PDF
    Simple biomarkers are required to identify TB in both HIV(-)TB(+) and HIV(+)TB(+) patients. Earlier studies have identified the M. tuberculosis Malate Synthase (MS) and MPT51 as immunodominant antigens in TB patients. One goal of these investigations was to evaluate the sensitivity and specificity of anti-MS and -MPT51 antibodies as biomarkers for TB in HIV(-)TB(+) and HIV(+)TB(+) patients from a TB-endemic setting. Earlier studies also demonstrated the presence of these biomarkers during incipient subclinical TB. If these biomarkers correlate with incipient TB, their prevalence should be higher in asymptomatic HIV(+) subjects who are at a high-risk for TB. The second goal was to compare the prevalence of these biomarkers in asymptomatic, CD4(+) T cell-matched HIV(+)TB(-) subjects from India who are at high-risk for TB with similar subjects from US who are at low-risk for TB.Anti-MS and -MPT51 antibodies were assessed in sera from 480 subjects including PPD(+) or PPD(-) healthy subjects, healthy community members, and HIV(-)TB(+) and HIV(+)TB(+) patients from India. Results demonstrate high sensitivity (approximately 80%) of detection of smear-positive HIV(-)TB(+) and HIV(+)TB(+) patients, and high specificity (>97%) with PPD(+) subjects and endemic controls. While approximately 45% of the asymptomatic HIV(+)TB(-) patients at high-risk for TB tested biomarker-positive, >97% of the HIV(+)TB(-) subjects at low risk for TB tested negative. Although the current studies are hampered by lack of knowledge of the outcome, these results provide strong support for the potential of these biomarkers to detect incipient, subclinical TB in HIV(+) subjects.These biomarkers provide high sensitivity and specificity for TB diagnosis in a TB endemic setting. Their performance is not compromised by concurrent HIV infection, site of TB and absence of pulmonary manifestations in HIV(+)TB(+) patients. Results also demonstrate the potential of these biomarkers for identifying incipient subclinical TB in HIV(+)TB(-) subjects at high-risk for TB

    Photosynthetic Responses to Heat Treatments at Different Temperatures and following Recovery in Grapevine (Vitis amurensis L.) Leaves

    Get PDF
    BACKGROUND: The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. METHODOLOGY/FINDINGS: The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. CONCLUSIONS: Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress
    corecore