3 research outputs found

    Come hybrid or high water: Making the case for a Green–Gray approach toward resilient urban stormwater management

    No full text
    120 years or more of unsustainable urban development has damaged the natural environment and disrupted essential ways to stabilize water body overflow and even mitigate pluvial flooding. In light of catastrophic flooding that has occurred globally, a renewed commitment to transforming built surfaces and incorporating more green infrastructures (GIs) has emerged. In fact, one could argue that an overcommitment to GI is being touted in the literature, but largely disconnected from more real-world possibilities, considering all things. In this commentary, we make the case that as cities transition from development patterns of the past and even considering climate-induced storm characteristics of the future, a hybridized solution (e.g., Green–Gray) should be considered. Smaller approaches to urban greening have been implemented in areas that need larger-scale restorations, thus proving to be insufficient. Likewise, the uncertainty surrounding rainfall and storm events has forced us to be more strategically balanced in our efforts to achieve resilience in our stormwater infrastructure. Hybridized solutions that include a diverse set of systems, anchored in local conditions, position us best for effective urban stormwater management. In the absence of such solutions, runoff volumes will continue to rise, flooding will prevail, and disenfranchised communities will remain disproportionately impacted by these impacts of urbanization.https://doi.org/10.1111/1752-1688.1311

    Moving Up the Ladder in Rising Waters: Community Science in Infrastructure and Hazard Mitigation Planning as a Pathway to Community Control and Flood Disaster Resilience

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Public participation is the democratic gateway to more just, inclusive, and resilient communities. However, infrastructure and hazard mitigation planning tends toward top-down, expert-driven processes that fail to meaningfully include communities most at risk of disasters. In this article, we critically examine the potential of citizen science in infrastructure and hazard mitigation planning with a focus on stormwater infrastructure and extreme wet-weather events, as floods are the most common disaster in the US. We review literature on various citizen science approaches, from crowdsourcing to community science, and offer a framework that situates them within Sherry Arnstein’s foundational piece on public participation, a “Ladder of Citizen Participation.” We discuss the opportunities different participatory methods offer for meaningful public involvement, knowledge generation, and ultimately community control and ownership of stormwater and flood infrastructure. We provide case study examples across the US of how public works departments, emergency management, and related organizations have engaged communities around hazard risks and flooding challenges, and offer recommendations for how these programs can be improved. We conclude that in order to produce data needed to mitigate flood disasters and increase trust and public interest in infrastructure needs, civic participation should be grounded in community science, utilizing a multimedia and technological platform. The methods applied and data generated can be leveraged toward public safety, and provide voice, agency, and power particularly to disenfranchised communities most at risk from current hazards and looming climate change impacts.http://doi.org/10.5334/cstp.46
    corecore