18 research outputs found
A bone of contention: A dynamic ultrasound assessment of the role of the radial head in the arthrokinematics of the proximal radioulnar joint
INTRODUCTION: The arthrokinematics of the proximal radioulnar joint (PRUJ) are believed to follow the convex-concave rule, meaning that when the convex radial head articulates with the concave radial notch on the ulna, rolling and gliding occur in opposite directions during forearm pronation and supination. Previous research using helical computerized tomography (CT) identified that the sequence of joint actions is in contrast with this rule, which would indicate a posterior glide of the radius on the ulna during pronation movement and the converse during supination.
OBJECTIVES: The aims of this study are to determine the arthrokinematics of the PRUJ while being assessed via ultrasound (US) imaging and to assess the impact the direction of joint mobilization has on active and passive range of motion (ROM) during forearm supination and pronation at the PRUJ.
METHODS: A convenience sample of 53 healthy individuals were recruited. The arthrokinematics of the PRUJ were observed via US cine-loops. A linear US transducer was applied in the transverse plane and placed over the radial head during all testing conditions. A metronome standardized the rate of forearm pronation and supination at 1Hz (60 bpm) during US cine-loops acquisition. Radial head motion was assessed in two different elbow positions during US and joint range of motion assessment. The elbow was flexed to 90° with a neutral forearm position and fully extended with a neutral forearm position. The glenohumeral joint was stabilized during all testing conditions. A repeated measures design randomizing joint mobilization direction to the radial head was utilized to assess forearm pronation and supination via inclinometer data measured in degrees. Joint glides were applied to the radial head according to the convex-concave rule to facilitate forearm supination and pronation. An anteromedial glide to facilitate forearm supination and a posterolateral glide to facilitate forearm pronation. A metronome standardized the rate of joint mobilization at a rate 2Hz (120 bpm). A bubble inclinometer assessed active and passive PRUJ ROM at the wrist during all testing conditions.
RESULTS:US imaging cine-loops showed the radial head rolled anteromedially during pronation and posterolaterally during supination, with no translation/gliding evident. Multivariate analysis revealed that the direction of joint mobilization had a significant impact on ROM F(1,47.0)= 6.964, p=.011, partial η2 =.129), with anterior mobilization increasing pronation and posterior mobilization increasing supination. Supination ROM was significantly increased F1(1, 47.0) = 78.03, p
CONCLUSION: Our findings are in conflict with the convex-concave rule, which is frequently used by physical therapists to improve joint motion. Should we now reconsider applying this rule to improve joint ROM at the PRUJ
Low-threshold ultrahigh-energy neutrino search with the Askaryan Radio Array
In the pursuit of the measurement of the still-elusive ultrahigh-energy (UHE) neutrino flux at energies of order EeV, detectors using the in-ice Askaryan radio technique have increasingly targeted lower trigger thresholds. This has led to improved trigger-level sensitivity to UHE neutrinos. Working with data collected by the Askaryan Radio Array (ARA), we search for neutrino candidates at the lowest threshold achieved to date, leading to improved analysis-level sensitivities. A neutrino search on a data set with 208.7 days of livetime from the reduced-threshold fifth ARA station is performed, achieving a 68% analysis efficiency over all energies on a simulated mixed-composition neutrino flux with an expected background of 0.10-0.04+0.06 events passing the analysis. We observe one event passing our analysis and proceed to set a neutrino flux limit using a Feldman-Cousins construction. We show that the improved trigger-level sensitivity can be carried through an analysis, motivating the phased array triggering technique for use in future radio-detection experiments. We also include a projection using all available data from this detector. Finally, we find that future analyses will benefit from studies of events near the surface to fully understand the background expected for a large-scale detector
A neural network based UHE neutrino reconstruction method for the Askaryan Radio Array (ARA)
The Askaryan Radio Array (ARA) is an ultra-high energy (UHE) neutrino (Eν > 1017 eV) detector at South Pole. ARA aims to utilize radio signals detected from UHE neutrino interactions in the glacial ice to infer properties about the interaction vertex as well as the incident neutrino. To retrieve these properties from experiment data, the first step is to extract timing, amplitude and frequency information from waveforms of different antennas buried in the deep ice. These features can then be utilized in a neural network to reconstruct the neutrino interaction vertex position, incoming neutrino direction and shower energy. So far, vertex can be reconstructed through interferometry while neutrino reconstruction is still under investigation. Here I will present a solution based on multi-task deep neural networks which can perform reconstruction of both vertex and incoming neutrinos with a reasonable precision. After training, this solution is capable of rapid reconstructions (e.g. 0.1 ms/event compared to 10000 ms/event in a conventional routine) useful for trigger and filter decisions, and can be easily generalized to different station configurations for both design and analysis purposes
A Template-based UHE Neutrino Search Strategy for the Askaryan Radio Array (ARA)
The Askaryan Radio Array (ARA) is a gigaton-size neutrino radio telescope located near the geographic South Pole. ARA has five independent stations designed to detect Askaryan emission coming from the interactions between ultra-high energy neutrinos (> 10 PeV) and Antarctic ice. Each station includes of 16 antenna deployed in a matrix shape at up to 200 m deep in the ice. A simulated neutrino template, including the detector response model, was implemented in a new search technique for reducing background noise and improving the vertex reconstruction resolution. The template is used to scan through the data using the matched filter method, inspired by LIGO, looking for a low SNR neutrino signature and ultimately aiming to lower the detector’s energy threshold at the analysis level. I will present the estimated sensitivity improvements to ARA analyses through the application of the template technique with results from simulation
The Calibration of the Geometry and Antenna delay in Askaryan Radio Array Station 4 and 5
The Askaryan Radio Array (ARA) experiment at the South Pole is designed to detect the radio signals produced by ultra high energy cosmic neutrino interactions in the ice. There are 5 independent ARA stations, one of which (A5) includes a low-threshold phased array trigger string. Each ARA station is designed to work as an autonomous detector. The Data Acquisition System in all ARA stations is equipped with the Ice Ray Sampler second-generation (IRS2) chip, a custom-made, application-specific integrated circuit (ASIC) for high-speed sampling and digitization. In this contribution, we describe the methodology used to calibrate the IRS2 digitizer chip and the station geometry, namely the relative timing between each pair of ARA antennas, deployed at 200 m below the Antarctic ice surface, and their geometrical positions in the ice, for ARA stations 4 and 5. Our calibration allows for proper timing correlations between incoming signals, which is crucial for radio vertex reconstruction and thus detection of ultra high energy neutrinos through the Askaryan effect. We achieve a signal timing precision on a sub-nanosecond level and an antenna position precision within 10 cm
Implementing a Low-Threshold Analysis with the Askaryan Radio Array (ARA)
The Askaryan Radio Array (ARA) is a ground-based radio detector at the South Pole designed to capture Askaryan emission from ultra-high energy neutrinos interacting within the Antarctic ice. The newest ARA station has been equipped with a phased array trigger, in which radio signals in multiple antennas are summed in predetermined directions prior to the trigger. In this way, impulsive signals add coherently, while noise likely does not, allowing the trigger threshold to be lower than a traditional ARA station. Early results on just a fraction of available data from this new system prove the feasibility of a low-threshold analysis
A low-threshold ultrahigh-energy neutrino search with the Askaryan Radio Array
In the pursuit of the measurement of the still-elusive ultrahigh-energy (UHE)
neutrino flux at energies of order EeV, detectors using the in-ice Askaryan
radio technique have increasingly targeted lower trigger thresholds. This has
led to improved trigger-level sensitivity to UHE neutrinos. Working with data
collected by the Askaryan Radio Array (ARA), we search for neutrino candidates
at the lowest threshold achieved to date, leading to improved analysis-level
sensitivities. A neutrino search on a data set with 208.7~days of livetime from
the reduced-threshold fifth ARA station is performed, achieving a 68\% analysis
efficiency over all energies on a simulated mixed-composition neutrino flux
with an expected background of events passing the
analysis. We observe one event passing our analysis and proceed to set a
neutrino flux limit using a Feldman-Cousins construction. We show that the
improved trigger-level sensitivity can be carried through an analysis,
motivating the Phased Array triggering technique for use in future
radio-detection experiments. We also include a projection using all available
data from this detector. Finally, we find that future analyses will benefit
from studies of events near the surface to fully understand the background
expected for a large-scale detector.Comment: 15 pages, 8 figure
Triboelectric backgrounds to radio-based polar ultra-high energy neutrino (UHEN) experiments
In the hopes of observing the highest-energy neutrinos (E>1 EeV) populating the Universe, both past (RICE, AURA, ANITA) and current (RNO-G, ARIANNA, ARA and TAROGE-M) polar-sited experiments exploit the impulsive radio emission produced by neutrino interactions. In such experiments, rare single event candidates must be unambiguously identified above backgrounds. Background rejection strategies to date primarily target thermal noise fluctuations and also impulsive radio-frequency signals of anthropogenic origin. In this paper, we consider the possibility that ‘fake’ neutrino signals may also be generated naturally via the ‘triboelectric effect.’ This broadly describes any process in which force applied at a boundary layer results in displacement of surface charge, leading to the production of an electrostatic potential difference ΔV. Wind blowing over granular surfaces such as snow can induce such a potential difference, with subsequent coronal discharge. Discharges over timescales as short as nanoseconds can then lead to radio-frequency emissions at characteristic MHz–GHz frequencies. Using data from various past (RICE, AURA, SATRA, ANITA) and current (RNO-G, ARIANNA and ARA) neutrino experiments, we find evidence for such backgrounds, which are generally characterized by: (a) a threshold wind velocity which likely depends on the experimental trigger criteria and layout; for the experiments considered herein, this value is typically O(10 m/s), (b) frequency spectra generally shifted to the low-end of the frequency regime to which current radio experiments are typically sensitive (100–200 MHz), (c) for the strongest background signals, an apparent preference for discharges from above-surface structures, although the presence of more isotropic, lower amplitude triboelectric discharges cannot be excluded