1,503 research outputs found

    X-Ray Emitting Ejecta of Supernova Remnant N132D

    Full text link
    The brightest supernova remnant in the Magellanic Clouds, N132D, belongs to the rare class of oxygen-rich remnants, about a dozen objects that show optical emission from pure heavy-element ejecta. They originate in explosions of massive stars that produce large amounts of O, although only a tiny fraction of that O is found to emit at optical wavelengths. We report the detection of substantial amounts of O at X-ray wavelengths in a recent 100 ks Chandra ACIS observation of N132D. A comparison between subarcsecond-resolution Chandra and Hubble images reveals a good match between clumpy X-ray and optically emitting ejecta on large (but not small) scales. Ejecta spectra are dominated by strong lines of He- and H-like O; they exhibit substantial spatial variations partially caused by patchy absorption within the LMC. Because optical ejecta are concentrated in a 5 pc radius elliptical expanding shell, the detected ejecta X-ray emission also originates in this shell.Comment: 5 pages, 6 figures, ApJ Letters, in pres

    A compact design for a magnetic synchrotron to store beams of hydrogen atoms

    Full text link
    We present a design for an atomic synchrotron consisting of 40 hybrid magnetic hexapole lenses arranged in a circle. We show that for realistic parameters, hydrogen atoms with a velocity up to 600 m/s can be stored in a 1-meter diameter ring, which implies that the atoms can be injected in the ring directly from a pulsed supersonic beam source. This ring can be used to study collisions between stored hydrogen atoms and molecular beams of many different atoms and molecules. The advantage of using a synchrotron is two-fold: (i) the collision partners move in the same direction as the stored atoms, resulting in a small relative velocity and thus a low collision energy, and (ii) by storing atoms for many round-trips, the sensitivity to collisions is enhanced by a factor of 100-1000. In the proposed ring, the cross-sections for collisions between hydrogen, the most abundant atom in the universe, with any atom or molecule that can be put in a beam, including He, H2_2, CO, ammonia and OH can be measured at energies below 100 K. We discuss the possibility to use optical transitions to load hydrogen atoms into the ring without influencing the atoms that are already stored. In this way it will be possible to reach high densities of stored hydrogen atoms.Comment: 9 pages, 3 figure

    Warble infestations in some Canadian caribou and their significance

    Get PDF
    Warble fly larvae (Oedemagena tarandi) occurred in 97-100% of barren-ground caribou (R.t. groen-landicus) sampled in March from the Beverly herd. In December, they occurred in 98% of males and 75% of females. Larvae numbers increased up to several-fold from December to March. Within age classes, males generally were more heavily infected than females. Annual differences were small. Larvae occurred in 14 and 26% of two populations of Peary caribou (Rangifer tarandus pearyi) on the Canadian Arctic Islands. In them, incidences of larvae were unrelated to sex or age. Greater than average numbers of larvae in barren-ground caribou sometimes were associated with females in relatively poor condition and therefore less fecund. These results are discussed in relation to current hypotheses of the factors that affect warble infections

    Dense, Fe-rich Ejecta in Supernova Remnants DEM L238 and DEM L249: A New Class of Type Ia Supernova?

    Get PDF
    We present observations of two LMC supernova remnants (SNRs), DEM L238 and DEM L249, with the Chandra and XMM-Newton X-ray satellites. Bright central emission, surrounded by a faint shell, is present in both remnants. The central emission has an entirely thermal spectrum dominated by strong Fe L-shell lines, with the deduced Fe abundance in excess of solar and not consistent with the LMC abundance. This Fe overabundance leads to the conclusion that DEM L238 and DEM L249 are remnants of thermonuclear (Type Ia) explosions. The shell emission originates in gas swept up and heated by the blast wave. A standard Sedov analysis implies about 50 solar masses in both swept-up shells, SNR ages between 10,000 and 15,000 yr, low (< 0.05 cm^-3) preshock densities, and subluminous explosions with energies of 3x10^50 ergs. The central Fe-rich supernova ejecta are close to collisional ionization equilibrium. Their presence is unexpected, because standard Type Ia SNR models predict faint ejecta emission with short ionization ages. Both SNRs belong to a previously unrecognized class of Type Ia SNRs characterized by bright interior emission. Denser than expected ejecta and/or a dense circumstellar medium around the progenitors are required to explain the presence of Fe-rich ejecta in these SNRs. Substantial amounts of circumstellar gas are more likely to be present in explosions of more massive Type Ia progenitors. DEM L238, DEM L249, and similar SNRs could be remnants of ``prompt'' Type Ia explosions with young (~100 Myr old) progenitors.Comment: 24 pages, 8 figures, ApJ, in pres
    • …
    corecore