29,985 research outputs found
Digital matched filters for detecting Gaussian signals in Gaussian noise
Digital filters for detecting random signals in random nois
Grid generation strategies for turbomachinery configurations
Turbomachinery flow fields involve unique grid generation issues due to their geometrical and physical characteristics. Several strategic approaches are discussed to generate quality grids. The grid quality is further enhanced through blending and adapting. Grid blending smooths the grids locally through averaging and diffusion operators. Grid adaptation redistributes the grid points based on a grid quality assessment. These methods are demonstrated with several examples
Comments on linear feature extraction
Linear transformation method for random data vector reduction by matrix algebr
MAG3D and its application to internal flowfield analysis
MAG3D (multiblock adaptive grid, 3D) is a 3D solution-adaptive grid generation code which redistributes grid points to improve the accuracy of a flow solution without increasing the number of grid points. The code is applicable to structured grids with a multiblock topology. It is independent of the original grid generator and the flow solver. The code uses the coordinates of an initial grid and the flow solution interpolated onto the new grid. MAG3D uses a numerical mapping and potential theory to modify the grid distribution based on properties of the flow solution on the initial grid. The adaptation technique is discussed, and the capability of MAG3D is demonstrated with several internal flow examples. Advantages of using solution-adaptive grids are also shown by comparing flow solutions on adaptive grids with those on initial grids
Heat sink capability of jet A fuel - Heat transfer and coking studies
Heat sink capabilities of Jet-A fuel - heat transfer and coking studie
An extended model of the quantum free-electron laser
Previous models of the quantum regime of operation of the Free Electron Laser
(QFEL) have performed an averaging and the application of periodic boundary
conditions to the coupled Maxwell - Schrodinger equations over short, resonant
wavelength intervals of the interaction. Here, an extended, one-dimensional
model of the QFEL interaction is presented in the absence of any such averaging
or application of periodic boundary conditions, the absence of the latter
allowing electron diffusion processes to be modeled throughout the pulse. The
model is used to investigate how both the steady-state (CW) and pulsed regimes
of QFEL operation are affected. In the steady-state regime it is found that the
electrons are confined to evolve as a 2-level system, similar to the previous
QFEL models. In the pulsed regime Coherent Spontaneous Emission (CSE) due to
the shape of the electron pulse current distribution is shown to be present in
the QFEL regime for the first time. However, unlike the classical case, CSE in
the QFEL is damped by the effects of quantum diffusion of the electron
wavefunction. Electron recoil from the QFEL interaction can also cause a
diffusive drift between the recoiled and non-recoiled parts of the electron
pulse wavefunction, effectively removing the recoiled part from the primary
electron-radiation interaction.Comment: Submitted to Optics Expres
Discovery of Griffiths phase in itinerant magnetic semiconductor Fe_{1-x}Co_xS_2
Critical points that can be suppressed to zero temperature are interesting
because quantum fluctuations have been shown to dramatically alter electron gas
properties. Here, the metal formed by Co doping the paramagnetic insulator
FeS, FeCoS, is demonstrated to order ferromagnetically at
where we observe unusual transport, magnetic, and
thermodynamic properties. We show that this magnetic semiconductor undergoes a
percolative magnetic transition with distinct similarities to the Griffiths
phase, including singular behavior at and zero temperature.Comment: 10 pages, 4 figure
Bose-Einstein Condensate Driven by a Kicked Rotor in a Finite Box
We study the effect of different heating rates of a dilute Bose gas confined
in a quasi-1D finite, leaky box. An optical kicked-rotor is used to transfer
energy to the atoms while two repulsive optical beams are used to confine the
atoms. The average energy of the atoms is localized after a large number of
kicks and the system reaches a nonequilibrium steady state. A numerical
simulation of the experimental data suggests that the localization is due to
energetic atoms leaking over the barrier. Our data also indicates a correlation
between collisions and the destruction of the Bose-Einstein condensate
fraction.Comment: 7 pages, 8 figure
- …