4 research outputs found

    BLOOD FLOW RESTRICTION DOES NOT AFFECT ACUTE MEASURES OF POWER AND FATIGUE DURING MAXIMAL CYCLING AMONG WOMEN

    Get PDF
    While it is known that blood flow restriction (BFR) can positively affect training and rehabilitation progression timelines, the physiological basis of this intervention is not fully understood. The purpose of this study was to determine the short-term impact of BFR upon power and fatigue performance measures during maximal cycling. In this study, maximal cycling was assessed using the Wingate Anaerobic Test (WAnT). Using a counterbalanced design, fourteen female participants completed standardized BFR and non-BFR protocols while completing the WAnT. No statistically-significant differences (p ≤ 0.05) were found between conditions for measures of peak power (PP), low power (LP) or fatigue index (FI). These findings suggest that BFR had no statistically-significant acute effect on these performance measures commonly assessed during the WAnT

    THE EFFECTS OF BLOOD FLOW RESTRICTION ON MEASURES OF GROSS MOTOR COORDINATION DURING THE WINGATE ANAEROBIC TEST

    Get PDF
    To date little research has addressed the impact of blood flow restriction (BFR) training upon gross motor coordination measures (GMCM) during a wide variety of maximal activities. The purpose of this study was to assess the effects of BFR on GMCM exhibited during maximal cycling. The performance of 14 females between the ages of eighteen and thirty-five were analyzed during the Wingate Anaerobic Test (WAnT). The participants completed the test under two conditions, using BFR and without. Results showed statistically significant differences (p ≤ 0.05) between conditions for dependent variables assessed throughout this common 30 second test of maximal cycling. These findings suggest that BFR negatively influenced GMCM exhibited during the WAnT

    A green fluorescent protein with photoswitchable emission from the deep sea

    Get PDF
    A colorful variety of fluorescent proteins (FPs) from marine invertebrates are utilized as genetically encoded markers for live cell imaging. The increased demand for advanced imaging techniques drives a continuous search for FPs with new and improved properties. Many useful FPs have been isolated from species adapted to sun-flooded habitats such as tropical coral reefs. It has yet remained unknown if species expressing green fluorescent protein (GFP)-like proteins also exist in the darkness of the deep sea. Using a submarine-based and -operated fluorescence detection system in the Gulf of Mexico, we discovered ceriantharians emitting bright green fluorescence in depths between 500 and 600 m and identified a GFP, named cerFP505, with bright fluorescence emission peaking at 505 nm. Spectroscopic studies showed that ~15% of the protein bulk feature reversible ON/OFF photoswitching that can be induced by alternating irradiation with blue und near-UV light. Despite being derived from an animal adapted to essentially complete darkness and low temperatures, cerFP505 maturation in living mammalian cells at 37°C, its brightness and photostability are comparable to those of EGFP and cmFP512 from shallow water species. Therefore, our findings disclose the deep sea as a potential source of GFP-like molecular marker proteins
    corecore