5 research outputs found

    Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications.

    No full text
    Electrochemical impedance spectroscopy (EIS) is a powerful technique used for the analysis of interfacial properties related to bio-recognition events occurring at the electrode surface, such as antibody-antigen recognition, substrate-enzyme interaction, or whole cell capturing. Thus, EIS could be exploited in several important biomedical diagnosis and environmental applications. However, the EIS is one of the most complex electrochemical methods, therefore, this review introduced the basic concepts and the theoretical background of the impedimetric technique along with the state of the art of the impedimetric biosensors and the impact of nanomaterials on the EIS performance. The use of nanomaterials such as nanoparticles, nanotubes, nanowires, and nanocomposites provided catalytic activity, enhanced sensing elements immobilization, promoted faster electron transfer, and increased reliability and accuracy of the reported EIS sensors. Thus, the EIS was used for the effective quantitative and qualitative detections of pathogens, DNA, cancer-associated biomarkers, etc. Through this review article, intensive literature review is provided to highlight the impact of nanomaterials on enhancing the analytical features of impedimetric biosensors

    Non-enzymatic disposable electrochemical sensors based on CuO/Co3O4@MWCNTs nanocomposite modified screen-printed electrode for the direct determination of urea

    No full text
    Abstract A new electrochemical impedimetric sensor for direct detection of urea was designed and fabricated using nanostructured screen-printed electrodes (SPEs) modified with CuO/Co3O4 @MWCNTs. A facile and simple hydrothermal method was achieved for the chemical synthesis of the CuO/Co3O4 nanocomposite followed by the integration of MWCNTs to be the final platform of the urea sensor. A full physical and chemical characterization for the prepared nanomaterials were performed including Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), contact angle, scanning electron microscope (SEM) and transmission electron microscopy (TEM). Additionally, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to study the electrochemical properties the modified electrodes with the nanomaterials at different composition ratios of the CuO/Co3O4 or MWCNTs. The impedimetric measurements were optimized to reach a picomolar sensitivity and high selectivity for urea detection. From the calibration curve, the linear concentration range of 10−12–10−2 M was obtained with the regression coefficient (R2) of 0.9961 and lower detection limit of 0.223 pM (S/N = 5). The proposed sensor has been used for urea analysis in real samples. Thus, the newly developed non-enzymatic sensor represents a considerable advancement in the field for urea detection, owing to the simplicity, portability, and low cost-sensor fabrication

    Advancing energy storage and supercapacitor applications through the development of Li+-doped MgTiO3 perovskite nano-ceramics

    No full text
    Abstract Perovskite oxide materials, specifically MgTiO3 (MT) and Li-doped MgTiO3 (MTxLi), were synthesized via a sol–gel method and calcination at 800 °C. This study explores the impact of varying Li doping levels (x = 0, 0.01, 0.05, and 0.1) on the crystalline structure and properties of MgTiO3. X-ray diffraction analysis revealed a well-defined rhombohedral MgTiO3 phase. Optical diffuse reflectance measurements provided insights into energy gap values, refractive index, and dielectric constant. Li+ doping enhanced the electrical properties of MgTiO3, with a notable phase transition observed at 50 °C. The study investigated impedance and AC conductivity under varying temperature and frequency conditions (25–120 °C, 4 Hz to 8 MHz). Electrochemical analysis through cyclic voltammetry and electrochemical impedance spectroscopy confirmed highly electrocatalytic properties for MTxLi, particularly when modified onto screen-printed electrodes. This work not only advances the understanding of Li-doped MgTiO3 nanostructures but also highlights their significant potential for direct electrochemical applications, particularly in the realm of energy storage
    corecore