134 research outputs found
Real Time Movement Classification in Versatile CPG Control
International audienceEveryday human tasks are composed of a succession of discrete and rhythmic movements. If we want robots to be able to interact appropriately , it appears paramount for them to be able to perform both types of movements too. Though Central Pattern Generators (CPGs) are usually employed for rhythmic movement generation, they are also able of producing discrete movements. In this paper , we present a classification method to distinguish rhythmic and discrete movements so that the CPG can switch from one mode to the other. Moreover, we introduce several new plasticity rules more suitable for discrete movements
CPG-based Controllers can Trigger the Emergence of Social Synchrony in Human-Robot Interactions
International audienceSynchronization is an indissociable part of social interactions between humans, especially in gestural communication. With the emergence of social robotics and assistance robots, it becomes paramount for robots to be socially accepted and for humans to be able to connect with them. As a consequence, synchronization mechanisms should be inherent to any robot controllers, allowing the adaption to the interacting partner in any rhythmic way necessary. In this paper, plastic Central Pattern Generators (CPG) have been implemented in the joints of the robot Pepper that has to learn to wave back at a human partner. Results show that the CPG-based controller leads to adaptive waving synchronized with the human partner, thus proving that the CPG-based controller can achieve synchronization
Muscle‐Like Compliance in Knee Articulations Improves Biped Robot Walkings
This chapter focuses on the compliance effect of dynamic humanoid robot walking. This compliance is generated with an articular muscle emulator system, which is designed using two neural networks (NNs). One NN models a muscle and a second learns to tune the proportional integral derivative (PID) of the articulation DC motor, allowing it to behave analogously to the muscle model. Muscle emulators are implemented in the knees of a three‐dimensional (3D) simulated biped robot. The simulation results show that the muscle emulator creates compliance in articulations and that the dynamic walk, even in walk‐halt‐stop transitions, improves. If an external thrust unbalances the biped during the walk, the muscle emulator improves the control and prevents the robot from falling. The total power consumption is significantly reduced, and the articular trajectories approach human trajectories
On the Role of Sensory Feedbacks in Rowat–Selverston CPG to Improve Robot Legged Locomotion
This paper presents the use of Rowat and Selverston-type of central pattern generator (CPG) to control locomotion. It focuses on the role of afferent exteroceptive and proprioceptive signals in the dynamic phase synchronization in CPG legged robots. The sensori-motor neural network architecture is evaluated to control a two-joint planar robot leg that slips on a rail. Then, the closed loop between the CPG and the mechanical system allows to study the modulation of rhythmic patterns and the effect of the sensing loop via sensory neurons during the locomotion task. Firstly simulations show that the proposed architecture easily allows to modulate rhythmic patterns of the leg, and therefore the velocity of the robot. Secondly, simulations show that sensori-feedbacks from foot/ground contact of the leg make the hip velocity smoother and larger. The results show that the Rowat–Selverston-type CPG with sensory feedbacks is an effective choice for building adaptive neural CPGs for legged robots
Guido and Am I Robot? A Case Study of Two Robotic Artworks Operating in Public Spaces
This article is a case study of two artworks that were commissioned for and exhibited in art venues in 2016 and 2017. The first artwork, Guido the Robot Guide, guided the visitors to an art-science exhibition, presenting the exhibits with a robot's perspective. Guido was the result of a collaboration between artists and engineers. The concept was an irreverent robot guide that could switch transparently from autonomous mode to operator control, allowing for seamless natural interaction. We examine how the project unfolded, its successes and limitations. Following on Guido, the lead artist developed the robotic installation Am I Robot? where the idea of a hybrid autonomous/remote-manual mode was implemented fully in a non-utilitarian machine that was exhibited in several art galleries. The article provides a concise contextualisation and details technical and design aspects as well as observations of visitors' interactions with the artworks. We evaluate the hybrid system's potential for creative robotics applications and identify directions for future research
Closed-loop Central Pattern Generator Control of Human Gaits in OpenSim Simulator
International audienceIn this paper, a new neuro-musculoskeletal gait simulation platform is presented. This platform is developed to reproduce healthy or altered walking gaits. It is based on an original model of central pattern generator able to generate variable rhythmic signals for controlling biological human leg joints. Output signals of motoneurons are applied to excitation inputs of modelled muscles of the human lower limbs model. Eight central pattern generators control a musculoskeletal model made up of three joints per leg actuated by 44 Hill-type muscle models. Forward dynamics simulation in OpenSim show that it is possible to generate different stable walking gaits by changing parameters of controller. Further work is aimed on development of stable human standing by implementing reflexes
Physical Analysis of Handshaking Between Humans: Mutual Synchronisation and Social Context
International audienceOne very popular form of interpersonal interaction used in various situations is the handshake (HS), which is an act that is both physical and social. This article aims to demonstrate that the paradigm of synchrony that refers to the psychology of individuals' temporal movement coordination could also be considered in handshaking. For this purpose, the physical features of the human HS are investigated in two different social situations: greeting and consolation. The duration and frequency of the HS and the force of the grip have been measured and compared using a prototype of a wearable system equipped with several sensors. The results show that an HS can be decomposed into four phases, and after a short physical contact, a synchrony emerges between the two persons who are shaking hands. A statistical analysis conducted on 31 persons showed that, in the two different contexts, there is a significant difference in the duration of HS, but the frequency of motion and time needed to synchronize were not impacted by the context of an interaction
Comparative Study of Forced Oscillators for the Adaptive Generation of Rhythmic Movements in Robot Controllers
International audienceThe interest of Central Pattern Generators (CPGs) in robot motor coordination is universally recognized so much so that a lot of possibilities on different scales of modeling are nowadays available. While each method obviously has its advantages and drawbacks, some could be more suitable for human-robot interactions. In this paper, we compare three oscillator models: Matsuoka, Hopf and Rowat-Selverston models. These models are integrated to a control architecture for a robotic arm and evaluated in simulation during a simplified handshaking interaction which involves constrained rhythmic movements. Furthermore, Heb-bian plasticity mechanisms are integrated to the Hopf and Rowat-Selverston models which can incorporate such mechanisms, contrary to the Matsuoka. Results show that the Matsuoka oscillator is subpar in all aspects and for the two others, that plasticity improves synchronization and leads to a significant decrease of the power consumption
Plastic CPG-based Robot Controllers for Human-Robot Rhythmic Interactions
International audienc
CPG-based Controllers can Trigger the Emergence of Social Synchrony in Human-Robot Interactions
International audienceSynchronization is an indissociable part of social interactions between humans, especially in gestural communication. With the emergence of social robotics and assistance robots, it becomes paramount for robots to be socially accepted and for humans to be able to connect with them. As a consequence, synchronization mechanisms should be inherent to any robot controllers, allowing the adaption to the interacting partner in any rhythmic way necessary. In this paper, plastic Central Pattern Generators (CPG) have been implemented in the joints of the robot Pepper that has to learn to wave back at a human partner. Results show that the CPG-based controller leads to adaptive waving synchronized with the human partner, thus proving that the CPG-based controller can achieve synchronization
- …