82 research outputs found

    The nuclear contacts and short range correlations in nuclei

    Full text link
    Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean- field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.Comment: Accepted for publication in Physics Letters. 6 pages, 2 figure

    Nucleon-Nucleon Correlations, Short-Lived Excitations, and the Quarks Within

    Get PDF
    This article reviews our current understanding of how the internal quark structure of a nucleon bound in nuclei differs from that of a free nucleon. The interpretation of measurements of the European Muon Collaboration (EMC) effect for valence quarks, a reduction in the deep inelastic scattering cross-section ratios for nuclei relative to deuterium, and its possible connection to nucleon-nucleon short-range correlations (SRCs) in nuclei are focused on. This review and new analysis (involving the amplitudes of non-nucleonic configurations in the nucleus) of the available experimental and theoretical evidence shows that there is a phenomenological relation between the EMC effect and the effects of SRCs that is not an accident. The influence of strongly correlated neutron-proton pairs involving highly virtual nucleons is responsible for both effects. These correlated pairs are temporary high-density fluctuations in the nucleus in which the internal structure of the nucleons is briefly modified. This conclusion needs to be solidified by the future experiments and improved theoretical analyses that are discussed herein

    Energy and momentum dependence of nuclear short-range correlations - Spectral function, exclusive scattering experiments and the contact formalism

    Full text link
    Results of electron-induced one- and two-nucleon hard knockout reactions, A(e,e′p)A(e,e'p) and A(e,e′pN)A(e,e'pN), in kinematics sensitive to nuclear short-range correlations, are studied using the nuclear contact formalism. A relation between the spectral function and the nuclear contacts is derived and used to analyze the dependence of the data on the initial energy and momentum of the knocked-out proton. The ratio between the number of emitted proton-proton pairs and proton-neutron pairs is shown to depend predominantly on a single ratio of contacts. This ratio is expected to present a deep minima in the initial energy and momentum plane, associated with the node in the proton-proton wave function. The formalism is applied to analyze data from recent 4^4He and 12^{12}C electron-scattering experiments performed at Jefferson laboratory. Different nucleon-nucleon potentials were used to asses the model-dependence of the results. For the ratio of proton-proton to proton-neutron pairs in 4^4He, a fair agreement with the experimental data is obtained using the two potentials, whereas for the ratio of proton-proton pairs to the total knocked-out protons in 12^{12}C, some of the features of the theory are not seen in the experimental data. Several possible explanations for this disagreement are discussed. It is also observed that the spectral function at specific domains of the momentum-energy plane is sensitive to the nucleon-nucleon interaction. Based on this sensitivity, it might be possible to constrain the short range part of the nuclear potential using such experimental data

    Nucleon-Nucleon Correlations, Short-Lived Excitations, and the Quarks Within

    Get PDF
    This article reviews our current understanding of how the internal quark structure of a nucleon bound in nuclei differs from that of a free nucleon. The interpretation of measurements of the European Muon Collaboration (EMC) effect for valence quarks, a reduction in the deep inelastic scattering cross-section ratios for nuclei relative to deuterium, and its possible connection to nucleon-nucleon short-range correlations (SRCs) in nuclei are focused on. This review and new analysis (involving the amplitudes of non-nucleonic configurations in the nucleus) of the available experimental and theoretical evidence shows that there is a phenomenological relation between the EMC effect and the effects of SRCs that is not an accident. The influence of strongly correlated neutron-proton pairs involving highly virtual nucleons is responsible for both effects. These correlated pairs are temporary high-density fluctuations in the nucleus in which the internal structure of the nucleons is briefly modified. This conclusion needs to be solidified by the future experiments and improved theoretical analyses that are discussed herein

    Michel electron reconstruction using cosmic-ray data from the MicroBooNE LArTPC

    Get PDF
    The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNE's detector response to low-energy electrons (electrons with energies up to ∼ 50 MeV). We describe the fully-automated algorithm developed to reconstruct Michel electrons, with which a sample of ∼ 14,000 Michel electron candidates is obtained. Most of this article is dedicated to studying the impact of radiative photons produced by Michel electrons on the accuracy and resolution of their energy measurement. In this energy range, ionization and bremsstrahlung photon production contribute similarly to electron energy loss in argon, leading to a complex electron topology in the TPC. By profiling the performance of the reconstruction algorithm on simulation we show that the ability to identify and include energy deposited by radiative photons leads to a significant improvement in the energy measurement of low-energy electrons. The fractional energy resolution we measure improves from over 30% to ∼ 20% when we attempt to include radiative photons in the reconstruction. These studies are relevant to a large number of analyses which aim to study neutrinos by measuring electrons produced by ν e interactions over a broad energy range. Keywords: Michel electrons, LArTPC, MicroBooN

    Short range correlations and the isospin dependence of nuclear correlation functions

    Get PDF
    Pair densities and associated correlation functions provide a critical tool for introducing many-body correlations into a wide-range of effective theories. Ab initio calculations show that two-nucleon pair-densities exhibit strong spin and isospin dependence. However, such calculations are not available for all nuclei of current interest. We therefore provide a simple model, which involves combining the short and long separation distance behavior using a single blending function, to accurately describe the two-nucleon correlations inherent in existing ab initio calculations. We show that the salient features of the correlation function arise from the features of the two-body short-range nuclear interaction, and that the suppression of the pp and nn pair-densities caused by the Pauli principle is important. Our procedure for obtaining pair-density functions and correlation functions can be applied to heavy nuclei which lack ab initio calculations.Comment: 5 pages, 4 figure
    • …
    corecore