322 research outputs found
Keeper-animal interactions: differences between the behaviour of zoo animals affect stockmanship
Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowl- edge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapmanâs zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n=93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animalsâ latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: âattitude towards the animalsâ and âknowledge and experience of the animalsâ. In this novel study, data demonstrated unique dyads were formed between keepers and zoo animals, which influenced animal behaviour
Activity, stability and 3-D structure of the Cu(II) form of a chitin-active lytic polysaccharide monooxygenase from Bacillus amyloliquefaciens
The enzymatic deconstruction of recalcitrant polysaccharide biomass is central to the conversion of these substrates for societal benefit, such as in biofuels. Traditional models for enzyme-catalysed polysaccharide degradation involved the synergistic action of endo-, exo-and processive glycoside hydrolases working in concert to hydrolyse the substrate. More recently this model has been succeeded by one featuring a newly discovered class of mononuclear copper enzymes: lytic polysaccharide monooxygenases (LPMOs; classified as Auxiliary Activity (AA) enzymes in the CAZy classification). In 2013, the structure of an LPMO from Bacillus amyloliquefaciens, BaAA10, was solved with the Cu centre photoreduced to Cu(I) in the X-ray beam. Here we present the catalytic activity of BaAA10. We show that it is a chitin-active LPMO, active on both α and ÎČ chitin, with the Cu(II) binding with low nM KD, and the substrate greatly increasing the thermal stability of the enzyme. A spiral data collection strategy has been used to facilitate access to the previously unobservable Cu(II) state of the active centre, revealing a coordination geometry around the copper which is distorted from axial symmetry, consistent with the previous findings from EPR spectroscopy
Craig Goch Report No. 10 The effect of density on mortality in juvenile Atlantic salmon (Salmo salar L.)
Le Cren (1973) suggested that the most likely population-regulating process in salmonid populations is density-dependent territorial behaviour. Thus, in trout (Salmo trutta L.) populations aggressive territorial behaviour was manifested in density-dependent mortality and the size of the adult stock was largely dependent on the area of suitable rearing ground for the fry (Le Cren, 1973). Ricker (1954) also concluded that in most fish populations compensatory mortality in the juvenile stages, rather than in the mature stock, was of greatest importance as a regulator of population size. The nature of such regulating mechanisms in juvenile populations is, therefore, of fundamental importance in the understanding of the dynamics of fish populations and the implementation of management policies.
This paper considers mortality rates of young Atlantic salmon (Salmo salar L.) in the upper catchment of the R. Wye over a two year period. The work forms part of a broader study of fish populations in the R. Wye
Craig Goch Report No. 9 Mass mortalities of adult salmon (Salmo salar L.) in the R. Wye, 1976
The physical, biological and chemical conditions leading to a mass mortality of adult salmon (Salmo salar L.) in the lower reaches of the R. Wye are described. As a result of sunny and low flow conditions during late June, 1976, water temperatures increased to a maximum of 27.6oC and accelerated the decay of substantial plant stands, the growth of which had been enhanced by the prevailing conditions: this resulted in severe de-oxygenation of the water. It is concluded that the low oxygen concentration in the water at this time was the principal factor in causing mass mortalities of fish and was probably accentuated by high water temperatures
A Cell-Surface GH9 Endo-Glucanase Coordinates with Surface Glycan Binding Proteins to Mediate Xyloglucan Uptake in the Gut Symbiont Bacteroides ovatus
Dietary fiber is an important food source for members of the human gut microbiome. Members of the dominant Bacteroidetes phylum capture diverse polysaccharides via the action of multiple cell surface proteins encoded within Polysaccharide Utilization Loci (PUL). The independent activities of PUL-encoded glycoside hydrolases (GH) and surface glycan-binding proteins (SGBPs) for the harvest of various glycans have been studied in detail, but how these proteins work together to coordinate uptake is poorly understood. Here, we combine genetic and biochemical approaches to discern the interplay between the BoGH9 endoglucanase and the xyloglucan-binding proteins SGBP-A and SGBP-B from the Bacteroides ovatus Xyloglucan Utilization Locus (XyGUL). The expression of BoGH9, a weakly active xyloglucanase in isolation, is required in a strain that expresses a non-binding version of SGBP-A (SGBP-A*). The crystal structure of the BoGH9 enzyme suggests the molecular basis for its robust activity on mixed-linkage ÎČ-glucan compared to xyloglucan. Yet, catalytically inactive site-directed mutants of BoGH9 fail to complement the deletion of the active BoGH9 in a SGBP-A* strain. We also find that SGBP-B is needed in an SGBP-A* background to support growth on xyloglucan, but that the non-binding SGBP-B* protein acts in a dominant negative manner to inhibit growth on xyloglucan. We postulate a model whereby the SGBP-A, SGBP-B and BoGH9 work together at the cell surface, likely within a discrete complex, and that xyloglucan binding by SGBP-B and BoGH9 may facilitate the orientation of the xyloglucan for transfer across the outer membrane
Overview of the design of the ITER heating neutral beam injectors
The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7MWof 1 MeVD0 or
0.87 MeVH0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam\uf0a0(NB)
injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous
systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative
ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a
realistic design is not possible, whereas the neutralisation ofH 12 andD 12 remains acceptable ( 4856%).
The design of a long pulse negative ion based injector is inherently more complicated than that of
short pulse positive ion based injectors because:
\u2022 negative ions are harder to create so that they can be extracted and accelerated from the ion source;
\u2022 electrons can be co-extracted from the ion source along with the negative ions, and their
acceleration must be minimised to maintain an acceptable overall accelerator efficiency;
\u2022 negative ions are easily lost by collisions with the background gas in the accelerator;
\u2022 electrons created in the extractor and accelerator can impinge on the extraction and acceleration
grids, leading to high power loads on the grids;
\u2022 positive ions are created in the accelerator by ionisation of the background gas by the accelerated
negative ions and the positive ions are back-accelerated into the ion source creating a massive power
load to the ion source;
\u2022 electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on
various downstream beamline components.
The design of the ITER HNBs is further complicated because ITER is a nuclear installation which
will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components
have to survive in that harsh environment. Additionally the beamline components and theNBcell,
where the beams are housed, will be activated and all maintenance will have to be performed remotely.
This paper describes the design of theHNBinjectors, but not the associated power supplies, cooling
system, cryogenic system etc, or the high voltage bushingwhich separates the vacuum of the beamline
fromthehighpressureSF6 of the high voltage (1MV) transmission line, through which the power, gas and
coolingwater are supplied to the beam source. Also themagnetic field reduction system is not described
Large magnetoresistance by Pauli blockade in hydrogenated graphene
We report the observation of a giant positive magnetoresistance in millimetre
scale hydrogenated graphene with magnetic field oriented in the plane of the
graphene sheet. A positive magnetoresistance in excess of 200\% at a
temperature of 300 mK was observed in this configuration, reverting to negative
magnetoresistance with the magnetic field oriented normal to the graphene
plane. We attribute the observed positive, in-plane, magnetoresistance to
Pauli-blockade of hopping conduction induced by spin polarization. Our work
shows that spin polarization in concert with electron-electron interaction can
play a dominant role in magnetotransport within an atomic monolayer.Comment: 6 pages, 3 figures, and supplemental informatio
Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut
The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta) genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a ÎČ-glucosidase, and two α-L-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins
Discovery and characterization of a new family of lytic polysaccharide monooxygenases
Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They are attracting considerable attention owing to their potential use in biomass conversion, notably in the production of biofuels. Previous studies have identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here, we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the three-dimensional structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active center featuring the 'histidine brace' active site, but is distinct in terms of its active site details and its EPR spectroscopy. The newly characterized AA11 family expands the LPMO clan, potentially broadening both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs
- âŠ