79 research outputs found
Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater
<p>Abstract</p> <p>Background</p> <p>Plants and their heterotrophic bacterial biofilm communities possibly strongly interact, especially in aquatic systems. We aimed to ascertain whether different macrophytes or their habitats determine bacterial community composition. We compared the composition of epiphytic bacteria on two common aquatic macrophytes, the macroalga <it>Chara aspera </it>Willd. and the angiosperm <it>Myriophyllum spicatum </it>L., in two habitats, freshwater (Lake Constance) and brackish water (Schaproder Bodden), using fluorescence <it>in situ </it>hybridization. The bacterial community composition was analysed based on habitat, plant species, and plant part.</p> <p>Results</p> <p>The bacterial abundance was higher on plants from brackish water [5.3 × 10<sup>7 </sup>cells (g dry mass)<sup>-1</sup>] than on plants from freshwater [1.3 × 10<sup>7 </sup>cells (g dry mass)<sup>-1</sup>], with older shoots having a higher abundance. The organic content of freshwater plants was lower than that of brackish water plants (35 vs. 58%), and lower in <it>C. aspera </it>than in <it>M. spicatum </it>(41 vs. 52%). The content of nutrients, chlorophyll, total phenolic compounds, and anthocyanin differed in the plants and habitats. Especially the content of total phenolic compounds and anthocyanin was higher in <it>M. spicatum</it>, and in general higher in the freshwater than in the brackish water habitat. Members of the Cytophaga-Flavobacteria-Bacteroidetes group were abundant in all samples (5–35% of the total cell counts) and were especially dominant in <it>M. spicatum </it>samples. Alphaproteobacteria were the second major group (3–17% of the total cell counts). Betaproteobacteria, gammaproteobacteria, and actinomycetes were present in all samples (5 or 10% of the total cell counts). Planctomycetes were almost absent on <it>M. spicatum </it>in freshwater, but present on <it>C. aspera </it>in freshwater and on both plants in brackish water.</p> <p>Conclusion</p> <p>Bacterial biofilm communities on the surface of aquatic plants might be influenced by the host plant and environmental factors. Distinct plant species, plant part and habitat specific differences in total cell counts and two bacterial groups (CFB, planctomycetes) support the combined impact of substrate (plant) and habitat on epiphytic bacterial community composition. The presence of polyphenols might explain the distinct bacterial community on freshwater <it>M. spicatum </it>compared to that of <it>M. spicatum </it>in brackish water and of <it>C. aspera </it>in both habitats.</p
POLR3A variants with striatal involvement and extrapyramidal movement disorder
Biallelic variants in POLR3A cause 4H leukodystrophy, characterized by hypomyelination in combination with cerebellar and pyramidal signs and variable non-neurological manifestations. Basal ganglia are spared in 4H leukodystrophy, and dystonia is not prominent. Three patients with variants in POLR3A, an atypical presentation with dystonia, and MR involvement of putamen and caudate nucleus (striatum) and red nucleus have previously been reported. Genetic, clinical findings and 18 MRI scans from nine patients with homozygous or compound heterozygous POLR3A variants and predominant striatal changes were retrospectively reviewed in order to characterize the striatal variant of POLR3A-associated disease. Prominent extrapyramidal involvement was the predominant clinical sign in all patients. The three youngest children were severely affected with muscle hypotonia, impaired head control, and choreic movements. Presentation of the six older patients was milder. Two brothers diagnosed with juvenile parkinsonism were homozygous for the c.1771-6C > G variant in POLR3A; the other seven either carried c.1771-6C > G (n = 1) or c.1771-7C > G (n = 7) together with another variant (missense, synonymous, or intronic). Striatal T2-hyperintensity and atrophy together with involvement of the superior cerebellar peduncles were characteristic. Additional MRI findings were involvement of dentate nuclei, hila, or peridentate white matter (3, 6, and 4/9), inferior cerebellar peduncles (6/9), red nuclei (2/9), and abnormal myelination of pyramidal and visual tracts (6/9) but no frank hypomyelination. Clinical and MRI findings in patients with a striatal variant of POLR3A-related disease are distinct from 4H leukodystrophy and associated with one of two intronic variants, c.1771-6C > G or c.1771-7C > G, in combination with another POLR3A variant
Identification of FOXP1 Deletions in Three Unrelated Patients with Mental Retardation and Significant Speech and Language Deficits
Mental retardation affects 2-3% of the population and shows a high heritability. Neurodevelopmental disorders that include pronounced impairment in language and speech skills occur less frequently. For most cases, the molecular basis of mental retardation with or without speech and language disorder is unknown due to the heterogeneity of underlying genetic factors. We have used molecular karyotyping on 1523 patients with mental retardation to detect copy number variations (CNVs) including deletions or duplications. These studies revealed three heterozygous overlapping deletions solely affecting the forkhead box P1 (FOXP1) gene. All three patients had moderate mental retardation and significant language and speech deficits. Since our results are consistent with a de novo occurrence of these deletions, we considered them as causal although we detected a single large deletion including FOXP1 and additional genes in 4104 ancestrally matched controls. These findings are of interest with regard to the structural and functional relationship between FOXP1 and FOXP2. Mutations in FOXP2 have been previously related to monogenic cases of developmental verbal dyspraxia. Both FOXP1 and FOXP2 are expressed in songbird and human brain regions that are important for the developmental processes that culminate in speech and language. ©2010 Wiley-Liss, Inc
Cohen syndrome diagnosis using whole genome arrays
Background Cohen syndrome is a rare autosomal recessive disorder with a complex phenotype including psychomotor retardation, microcephaly, obesity with slender extremities, joint laxity, progressive chorioretinal dystrophy/myopia, intermittent isolated neutropenia, a cheerful disposition, and characteristic facial features. The COH1 gene, which contains 62 exons, is so far the only gene known to be associated with Cohen syndrome. Point mutations, deletions and duplications have been described in this gene. Oligonucleotide arrays have reached a resolution which allows the detection of intragenic deletions and duplications, especially in large genes such as COH1.
Method and results High density oligonucleotide array data from patients with unexplained mental retardation (n=1523) and normal controls (n=1612) were analysed for copy number variation (CNV) changes. Intragenic heterozygous deletions in the COH1 gene were detected in three patients but no such changes were detected in the controls. Subsequent sequencing of the COH1 gene revealed point mutations in the second allele in all three patients analysed.
Conclusion Genome-wide CNV screening with high density arrays provides a tool to detect intragenic deletions in the COH1 gene. This report presents an example of how microarrays can be used to identify autosomal recessive syndromes and to extend the phenotypic and mutational spectrum of recessive disorders
Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature
Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD.'' All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations
Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism
ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder
Genetic landscape of pediatric acute liver failure of indeterminate origin.
BACKGROUND AIMS
Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, main causes are viral infections (12-16%) and inherited metabolic diseases (14-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition.
METHODS
With this international, multicenter observational study, patients (0-18Â y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed.
RESULTS
In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF (RALF). WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (46%), and in children with RALF (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8) and DGUOK (n=7) were the most frequent findings. When categorizing, most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%) and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplants.
CONCLUSION
This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics
Recommended from our members
New insights into the clinical and molecular spectrum of the novel CYFIP2-related neurodevelopmental disorder and impairment of the WRC-mediated actin dynamics
- …