2 research outputs found

    The influence of retardation and dielectric environments on interatomic Coulombic decay

    Get PDF
    Interatomic Coulombic decay (ICD) is a very efficient process by which high-energy radiation is redistributed between molecular systems, often producing a slow electron, which can be damaging to biological tissue. During ICD, an initially-ionised and highly-excited donor species undergoes a transition where an outer-valence electron moves to a lower-lying vacancy, transmitting a photon with sufficient energy to ionise an acceptor species placed close by. Traditionally the ICD process has been described via ab initio quantum chemistry based on electrostatics in free space, which cannot include the effects of retardation stemming from the finite speed of light, nor the influence of a dispersive, absorbing, discontinuous environment. Here we develop a theoretical description of ICD based on macroscopic quantum electrodynamics in dielectrics, which fully incorporates all these effects, enabling the established power and broad applicability of macroscopic quantum electrodynamics to be unleashed across the fast-developing field of ICD

    Signature of short-range van der Waals forces observed in Poisson spot diffraction with indium atoms

    Get PDF
    The phase of de Broglie matter waves is a sensitive probe for small forces. In particular, the attractive van der Waals force experienced by polarizable atoms in the close vicinity of neutral surfaces is of importance in nanoscale systems. It results in a phase shift that can be observed in matter-wave diffraction experiments. Here, we observe Poisson spot diffraction of indium atoms at submillimeter distances behind spherical submicron silicon dioxide particles to probe the dispersion forces between atoms and the particle surfaces. We compare the measured relative intensity of Poisson’s spot to theoretical results derived from first principles in an earlier communication and find a clear signature of the atom-surface interaction
    corecore