1,071 research outputs found

    Crossover Behavior in Burst Avalanches of Fiber Bundles: Signature of Imminent Failure

    Full text link
    Bundles of many fibers, with statistically distributed thresholds for breakdown of individual fibers and where the load carried by a bursting fiber is equally distributed among the surviving members, are considered. During the breakdown process, avalanches consisting of simultaneous rupture of several fibers occur, with a distribution D(Delta) of the magnitude Delta of such avalanches. We show that there is, for certain threshold distributions, a crossover behavior of D(Delta) between two power laws D(Delta) proportional to Delta^(-xi), with xi=3/2 or xi=5/2. The latter is known to be the generic behavior, and we give the condition for which the D(Delta) proportional to Delta^(-3/2) behavior is seen. This crossover is a signal of imminent catastrophic failure in the fiber bundle. We find the same crossover behavior in the fuse model.Comment: 4 pages, 4 figure

    Landscape genetics goes to sea

    Get PDF
    A recent study revealing geographical and environmental barriers to gene flow in the harbour porpoise shows the great potential of 'landscape genetics' when applied to marine organisms

    Burst avalanches in solvable models of fibrous materials

    Full text link
    We review limiting models for fracture in bundles of fibers, with statistically distributed thresholds for breakdown of individual fibers. During the breakdown process, avalanches consisting of simultaneous rupture of several fibers occur, and the distribution D(Δ)D(\Delta) of the magnitude Δ\Delta of such avalanches is the central characteristics in our analysis. For a bundle of parallel fibers two limiting models of load sharing are studied and contrasted: the global model in which the load carried by a bursting fiber is equally distributed among the surviving members, and the local model in which the nearest surviving neighbors take up the load. For the global model we investigate in particular the conditions on the threshold distribution which would lead to anomalous behavior, i.e. deviations from the asymptotics D(Δ)∼Δ−5/2D(\Delta) \sim \Delta^{-5/2}, known to be the generic behavior. For the local model no universal power-law asymptotics exists, but we show for a particular threshold distribution how the avalanche distribution can nevertheless be explicitly calculated in the large-bundle limit.Comment: 28 pages, RevTeX, 3 Postscript figure
    • …
    corecore