28 research outputs found

    Effect of Fluorine Implantation Dose on Boron Transient Enhanced Diffusion and Boron Thermal Diffusion in Si1-xGex

    Get PDF
    This paper studies how boron transient enhanced diffusion (TED) and boron thermal diffusion in Si1-xGex are influenced by a high-energy fluorine implant at a dose in the range 5 x 10(14) cm(-2) to 1 x 10(16) cm(-2). Secondary ion mass spectroscopy (SIMS) profiles of boron marker layers are presented for different fluorine doses and compared with fluorine SIMS profiles and transmission electron microscopy (TEM) micrographs to establish the conditions under which boron diffusion is suppressed. The SIMS profiles show that boron thermal diffusion is reduced above a critical F+ dose of 7-9 x 10(14) cm(-2), whereas boron TED is suppressed at all doses. Fitting of the measured boron profiles gives suppressions of boron TED diffusion coefficients by factors of 6.8, 10.6, and 12.9 and of boron thermal diffusion coefficient by factors of 1.9, 2.5, and 3.5 for F+ implantation doses of 9 x 10(14), 1.4 x 10(15), and 2.3 x 10(15) cm(-2) respectively. The reduction of boron thermal diffusion above the critical fluorine dose correlates with the appearance of a shallow fluorine peak on the SIMS profile in the vicinity of the boron marker layer, which is attributed to vacancy-fluorine clusters. This reduction of boron thermal diffusion is explained by the effect of the clusters in suppressing the interstitial concentration in the Si1-xGex layer. The suppression of boron TED correlates with a deep fluorine peak around the range of the fluorine implant and TEM micrographs show that this peak is due to a band of dislocation loops. This suppression of boron TED is explained by the retention of interstitials in the dislocation, loops, which suppresses their backflow to the surface. The fluorine SIMS profiles show that the fluorine concentration in the Si1-xGex layer increases with increasing germanium concentration and that the fluorine concentration in the Si1-xGex layer after anneal is much higher than after implant. This indicates that fluorine is transported into the Si1-xGex layer from the adjacent silicon, and is explained by the lower formation energy for vacancies in Ge than in Si. This accumulation of fluorine in the Si1-xGex layer during anneal is advantageous for devices like SiGe heterojunction bipolar transistors, where the boron must be kept within the Si1-xGex layer.</p

    Adverse effect of Ge+ implantation for fabrication of SiGe PMOS

    No full text
    SiGe heterostructure MOSFETS have the potential for improved channel mobility over Si only devices. It is shown that fabrication by implantation leads to inferior devices in contrast to previously reported work. A simultaneous decrease of the drain current and increase of the interface state density has been observe

    SiGe device architectures synthesised by local area Ge implantation; structural and electrical characterisation

    No full text
    SiGe device islands have been synthesised by Ge+ ion implantation of doses of 0.45 x 1016 Ge+/cm2 to 4.05 x10 Ge+/cm2 at 100keV or 200keV into patterned (100) bulk silicon wafers. The control of 'mask edge defects' and 'end of range' defects has been achieved by applying Si+ post-amorphisation, where the ions are implanted into a wider window, and by using solid phase epitaxial regrowth. Defect free SiGe alloy islands with a peak Ge concentration of ~6at% and minority carrier generation lifetimes comparable to bulk silicon (~ms) have been successfully produced. The integration of this synthesis process into CMOS and bipolar technologies is discussed. Realization of shallower islands, with dimensions more consistent with future generations of advanced devices and with higher Ge contents, is in hand
    corecore