63 research outputs found

    PonyGE2: Grammatical Evolution in Python

    Full text link
    Grammatical Evolution (GE) is a population-based evolutionary algorithm, where a formal grammar is used in the genotype to phenotype mapping process. PonyGE2 is an open source implementation of GE in Python, developed at UCD's Natural Computing Research and Applications group. It is intended as an advertisement and a starting-point for those new to GE, a reference for students and researchers, a rapid-prototyping medium for our own experiments, and a Python workout. As well as providing the characteristic genotype to phenotype mapping of GE, a search algorithm engine is also provided. A number of sample problems and tutorials on how to use and adapt PonyGE2 have been developed.Comment: 8 pages, 4 figures, submitted to the 2017 GECCO Workshop on Evolutionary Computation Software Systems (EvoSoft

    The Facebook Algorithm's Active Role in Climate Advertisement Delivery

    Full text link
    Communication strongly influences attitudes on climate change. Within sponsored communication, high spend and high reach advertising dominates. In the advertising ecosystem we can distinguish actors with adversarial stances: organizations with contrarian or advocacy communication goals, who direct the advertisement delivery algorithm to launch ads in different destinations by specifying targets and campaign objectives. We present an observational (N=275,632) and a controlled (N=650) study which collectively indicate that the advertising delivery algorithm could itself be an actor, asserting statistically significant influence over advertisement destinations, characterized by U.S. state, gender type, or age range. This algorithmic behaviour may not entirely be understood by the advertising platform (and its creators). These findings have implications for climate communications and misinformation research, revealing that targeting intentions are not always fulfilled as requested and that delivery itself could be manipulated

    Evolving Code with A Large Language Model

    Full text link
    Algorithms that use Large Language Models (LLMs) to evolve code arrived on the Genetic Programming (GP) scene very recently. We present LLM GP, a formalized LLM-based evolutionary algorithm designed to evolve code. Like GP, it uses evolutionary operators, but its designs and implementations of those operators radically differ from GP's because they enlist an LLM, using prompting and the LLM's pre-trained pattern matching and sequence completion capability. We also present a demonstration-level variant of LLM GP and share its code. By addressing algorithms that range from the formal to hands-on, we cover design and LLM-usage considerations as well as the scientific challenges that arise when using an LLM for genetic programming.Comment: 34 pages, 9 figures, 6 Table
    • …
    corecore