128 research outputs found

    Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Get PDF
    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity

    Mice Engrafted with Human Fetal Thymic Tissue and Hematopoietic Stem Cells Develop Pathology Resembling Chronic Graft-versus-Host Disease

    Get PDF
    AbstractChronic graft-versus-host disease (cGVHD) is a significant roadblock to long-term hematopoietic stem cell (HSC) transplantation success. Effective treatments for cGVHD have been difficult to develop, in part because of a paucity of animal models that recapitulate the multiorgan pathologies observed in clinical cGVHD. Here we present an analysis of the pathology that occurs in immunodeficient mice engrafted with human fetal HSCs and implanted with fragments of human fetal thymus and liver. Starting at time points generally later than 100 days post-transplantation, the mice developed signs of illness, including multiorgan cellular infiltrates containing human T cells, B cells, and macrophages; fibrosis in sites such as lungs and liver; and thickened skin with alopecia. Experimental manipulations that delayed or reduced the efficiency of the HSC engraftment did not affect the timing or progression of disease manifestations, suggesting that pathology in this model is driven more by factors associated with the engrafted human thymic organoid. Disease progression was typically accompanied by extensive fibrosis and degradation of the thymic organoid, and there was an inverse correlation of disease severity with the frequency of FoxP3+ thymocytes. Hence, the human thymic tissue may contribute T cells with pathogenic potential, but the generation of regulatory T cells in the thymic organoid may help to control these cells before pathology resembling cGVHD eventually develops. This model thus provides a new system to investigate disease pathophysiology relating to human thymic events and to evaluate treatment strategies to combat multiorgan fibrotic pathology produced by human immune cells

    Extracellular-Vesicle-Based Therapeutics in Neuro-Ophthalmic Disorders

    Get PDF
    Extracellular vesicles (EVs) have been recognized as promising candidates for developing novel therapeutics for a wide range of pathologies, including ocular disorders, due to their ability to deliver a diverse array of bioactive molecules, including proteins, lipids, and nucleic acids, to recipient cells. Recent studies have shown that EVs derived from various cell types, including mesenchymal stromal cells (MSCs), retinal pigment epithelium cells, and endothelial cells, have therapeutic potential in ocular disorders, such as corneal injury and diabetic retinopathy. EVs exert their effects through various mechanisms, including promoting cell survival, reducing inflammation, and inducing tissue regeneration. Furthermore, EVs have shown promise in promoting nerve regeneration in ocular diseases. In particular, EVs derived from MSCs have been demonstrated to promote axonal regeneration and functional recovery in various animal models of optic nerve injury and glaucoma. EVs contain various neurotrophic factors and cytokines that can enhance neuronal survival and regeneration, promote angiogenesis, and modulate inflammation in the retina and optic nerve. Additionally, in experimental models, the application of EVs as a delivery platform for therapeutic molecules has revealed great promise in the treatment of ocular disorders. However, the clinical translation of EV-based therapies faces several challenges, and further preclinical and clinical studies are needed to fully explore the therapeutic potential of EVs in ocular disorders and to address the challenges for their successful clinical translation. In this review, we will provide an overview of different types of EVs and their cargo, as well as the techniques used for their isolation and characterization. We will then review the preclinical and clinical studies that have explored the role of EVs in the treatment of ocular disorders, highlighting their therapeutic potential and the challenges that need to be addressed for their clinical translation. Finally, we will discuss the future directions of EV-based therapeutics in ocular disorders. Overall, this review aims to provide a comprehensive overview of the current state of the art of EV-based therapeutics in ophthalmic disorders, with a focus on their potential for nerve regeneration in ocular diseases

    GRFS and CRFS in alternative donor hematopoietic cell transplantation for pediatric patients with acute leukemia.

    Get PDF
    We report graft-versus-host disease (GVHD)-free relapse-free survival (GRFS) (a composite end point of survival without grade III-IV acute GVHD [aGVHD], systemic therapy-requiring chronic GVHD [cGVHD], or relapse) and cGVHD-free relapse-free survival (CRFS) among pediatric patients with acute leukemia (n = 1613) who underwent transplantation with 1 antigen-mismatched (7/8) bone marrow (BM; n = 172) or umbilical cord blood (UCB; n = 1441). Multivariate analysis was performed using Cox proportional hazards models. To account for multiple testing, P \u3c .01 for the donor/graft variable was considered statistically significant. Clinical characteristics were similar between UCB and 7/8 BM recipients, because most had acute lymphoblastic leukemia (62%), 64% received total body irradiation-based conditioning, and 60% received anti-thymocyte globulin or alemtuzumab. Methotrexate-based GVHD prophylaxis was more common with 7/8 BM (79%) than with UCB (15%), in which mycophenolate mofetil was commonly used. The univariate estimates of GRFS and CRFS were 22% (95% confidence interval [CI], 16-29) and 27% (95% CI, 20-34), respectively, with 7/8 BM and 33% (95% CI, 31-36) and 38% (95% CI, 35-40), respectively, with UCB (P \u3c .001). In multivariate analysis, 7/8 BM vs UCB had similar GRFS (hazard ratio [HR], 1.12; 95% CI, 0.87-1.45; P = .39), CRFS (HR, 1.06; 95% CI, 0.82-1.38; P = .66), overall survival (HR, 1.07; 95% CI, 0.80-1.44; P = .66), and relapse (HR, 1.44; 95% CI, 1.03-2.02; P = .03). However, the 7/8 BM group had a significantly higher risk for grade III-IV aGVHD (HR, 1.70; 95% CI, 1.16-2.48; P = .006) compared with the UCB group. UCB and 7/8 BM groups had similar outcomes, as measured by GRFS and CRFS. However, given the higher risk for grade III-IV aGVHD, UCB might be preferred for patients lacking matched donors. © 2019 American Society of Hematology. All rights reserved

    Improved survival after acute graft-

    Get PDF
    A cute graft- versus -host disease remains a major threat to a successful outcome after allogeneic hematopoietic cell transplantation. While improvements in treatment and supportive care have occurred, it is unknown whether these advances have resulted in improved outcome specifically among those diagnosed with acute graft- versus -host disease. We examined outcome following diagnosis of grade II-IV acute graft- versus -host disease according to time period, and explored effects according to original graft- versus -host disease prophylaxis regimen and maximum overall grade of acute graft- versus -host disease. Between 1999 and 2012, 2,905 patients with acute myeloid leukemia (56%), acute lymphoblastic leukemia (30%) or myelodysplastic syndromes (14%) received a sibling (24%) or unrelated donor (76%) blood (66%) or marrow (34%) transplant and developed grade II-IV acute graft- versus -host disease (n=497 for 1999-2001, n=962 for 2002-2005, n=1,446 for 2006-2010). The median (range) follow-up was 144 (4-174), 97 (4-147) and 60 (8-99) months for 1999-2001, 2002-2005, and 2006-2010, respectively. Among the cohort with grade II-IV acute graft- versus -host disease, there was a decrease in the proportion of grade III-IV disease over time with 56%, 47%, and 37% for 1999-2001, 2002-2005, and 2006-2012, respectively ( P <0.001). Considering the total study population, univariate analysis demonstrated significant improvements in overall survival and treatment-related mortality over time, and deaths from organ failure and infection declined. On multivariate analysis, significant improvements in overall survival ( P =0.003) and treatment-related mortality ( P =0.008) were only noted among those originally treated with tacrolimus-based graft- versus -host disease prophylaxis, and these effects were most apparent among those with overall grade II acute graft- versus -host disease. In conclusion, survival has improved over time for tacrolimus-treated transplant recipients with acute graft- versus -host disease

    Comparative analysis of calcineurin-inhibitor-based methotrexate and mycophenolate mofetil-containing regimens for prevention of Graft-versus-Host Disease after reduced intensity conditioning allogeneic transplantation

    Get PDF
    The combination of a calcineurin inhibitor (CNI) such as tacrolimus (TAC) or cyclosporine (CYSP) with methotrexate (MTX) or with mycophenolate mofetil (MMF) has been commonly used for graft-versus-host disease (GVHD) prophylaxis after reduced-intensity conditioning (RIC) allogeneic hematopoietic cell transplantation (alloHCT), but there are limited data comparing efficacy of the 2 regimens. We evaluated 1564 adult patients who underwent RIC alloHCT for acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), and myelodysplastic syndrome (MDS) from 2000 to 2013 using HLA-identical sibling (matched related donor [MRD]) or unrelated donor (URD) peripheral blood graft and received CYSP or TAC with MTX or MMF for GVHD prophylaxis. Primary outcomes of the study were acute and chronic GVHD and overall survival (OS). The study divided the patient population into 4 cohorts based on regimen: MMF-TAC, MMF-CYSP, MTX-TAC, and MTX-CYSP. In the URD group, MMF-CYSP was associated with increased risk of grade II to IV acute GVHD (relative risk [RR], 1.78; P < .001) and grade III to IV acute GVHD (RR, 1.93; P = .006) compared with MTX-TAC. In the URD group, use of MMF-TAC (versus MTX-TAC) lead to higher nonrelapse mortality. (hazard ratio, 1.48; P = .008). In either group, no there was no difference in chronic GVHD, disease-free survival, and OS among the GVHD prophylaxis regimens. For RIC alloHCT using MRD, there are no differences in outcomes based on GVHD prophylaxis. However, with URD RIC alloHCT, MMF-CYSP was inferior to MTX-based regimens for acute GVHD prevention, but all the regimens were equivalent in terms of chronic GVHD and OS. Prospective studies, targeting URD recipients are needed to confirm these results
    corecore