25 research outputs found

    Determination of material parameters of isotropic and anisotropic hyper-elastic materials using boundary measured data

    No full text
    Identification of mechanical properties of isotropic and anisotropic materials that demonstrate non-linear elastic behavior, such as rubbers and soft tissues of human body, is critical for many industrial and medical purposes. In this paper, a method is presented to obtain the mechanical constants of Mooney-Rivlin and Holzapfel hyper-elastic material models which are employed to describe the behavior of isotropic and anisotropic hyper-elastic materials, respectively. By using boundary measured data from a sample with non-standard geometry, and by using an iterative inverse analysis technique, the material constants are obtained. The method uses the results of different experiments simultaneously to obtain the material parameters more accurately. The effectiveness of the proposed method is demonstrated through three examples. In the two first examples, the simulated measured data are used, while in the third example, the experimental data obtained from a polyvinyl alcohol sample are used

    Rozwiązania w postaci zamkniętej problemu skręcania belek konstrukcyjnych z uwzględnieniem promieni przejściowych pomiędzy łączonymi segmentami

    No full text
    In this paper, an effective semi-analytical method is presented for torsion analysis of structural beams with various kinds of junctions such as T, I, H, E and + beams. A fairly Simple but precise formulation based on analytical and accurate numerical solutions is presented for evaluating the shearing stress at critical points and computing the torsional rigidity of a member under torsion. The problem is formulated based on Prandtl’s stress function. The cross-section is decomposed into several segments, including straight, curved, end, and junction segments. The torsion problem is solved in each segment separately. Standard junction segments are analyzed using the finite element method with a fine mesh. Other segments are analyzed by analytical methods. Closed-form expressions in terms of geometrical parameters are found for the shearing stresses at critical points of each segment. The torsional rigidity of the cross section is also expressed by a closed-form expression. The presented formulations can be used for analysis of a wide range of thin- to moderately thick-walled complicated sections.W pracy przedstawiono efektywne, półanalityczne rozwiązanie problemu skręcania belek konstrukcyjnych o rożnych przekrojach, takich jak T, I, H, E oraz +. Całkiem proste, a jednocześnie dokładne sformułowanie zagadnienia oparte na rozwiązaniach analitycznych i numerycznych zaprezentowano dla przypadku obliczania naprężeń ścinających w krytycznych punktach przekroju oraz wyznaczania sztywności torsyjnej elementu poddanego obciążeniu skręcającemu. Rozwiązanie zadania oparto na funkcji naprężeń Prandtla. Przekrój poprzeczny belek zdekomponowano na kilka segmentów, włączając w to elementy prostoliniowe i zakrzywione, końcowe oraz łączące. Problem skręcania rozwiązano dla każdego segmentu oddzielnie. Typowe elementy łączące przeanalizowano za pomocą metody elementów skończonych z zastosowaniem drobnej siatki. Pozostałe segmenty obliczono analitycznie. Rozwiązanie w postaci zamkniętej względem parametrów geometrycznych wyznaczono pod kątem naprężeń ścinających w krytycznych punktach każdego segmentu. Sztywność skrętną całego przekroju wyrażono również formułą w postaci zamkniętej. Zaprezentowane rozwiązania mogą być stosowane w analizie skręcania szerokiego typoszeregu od cienko- po umiarkowanie grubościennych belek konstrukcyjnych o skomplikowanym kształcie przekroju poprzecznego

    An efficient analysis of steady-state heat conduction involving curved line/surface heat sources in two/three-dimensional isotropic media

    No full text
    In this paper, a new formulation based on the method of fundamental solutions for two/three- -dimensional steady-state heat conduction problems involving internal curved line/surface heat sources is presented. Arbitrary shapes and non-uniform intensities of the curved heat sources can be modeled by an assemblage of several parts with quadratic variations. The presented mesh-free modeling does not require any internal points as in domain methods. Four numerical examples are studied to verify the validity and efficiency of the proposed method. Our analyses have shown that the presented mesh-free formulation is very efficient in comparison with conventional boundary or domain solution techniques

    Autoclaving and clinical recycling: Effects on mechanical properties of orthodontic wires

    No full text
    Background: About half of the orthodontists recycle and reuse orthodontic wires because of their costs. So when talking about reuse and sterilization of wires, their effects on mechanical properties of wires should be clarified. The purpose of this study was to assess the effects of sterilization and clinical use on mechanical properties of stainless steel wires. Materials and Methods: Thirty stainless steel orthodontic wires were divided into three equal groups of control, autoclave (sterilized by autoclave), and recycle group (wires were used for orthodontic patients up to 4 weeks, cleaned by isopropyl alcohol and sterilized by autoclave). The mechanical properties (tensile test, three-point loading test for load-deflection curve) were determined. Results: Fracture force, yield strength, stiffness and modulus of elasticity in recycle groups were significantly lower than the other groups (P < 0.05). Conclusion: Although recycle wires were softer than those of control group, relatively small differences and also various properties of available wires have obscured the clinical predictability of their application. There is seemingly no problem in terms of mechanical properties to recycle orthodontic wires

    Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    No full text
    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost (R) brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results,the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% +/- 5.9%
    corecore