3 research outputs found

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Crop Establishment and Weed Control Options for Sustaining Dry Direct Seeded Rice Production in Eastern India

    No full text
    Dry direct seeded rice (DSR) has emerged as an economically viable alternative to puddled transplanted rice to address emerging constraints of labor and water scarcity and the rising cost of cultivation. However, wide adoption of DSR is seriously constrained by weed management trade-off. Therefore, the availability of effective weed control options is critical for the success and wide-scale adoption of DSR. A field study was conducted at ICAR-National Rice Research Institute, Cuttack, India, in the dry seasons of 2015 and 2016 to evaluate the performance of three crop establishment methods and five weed control practices on weed management, productivity, profitability and energetics of dry DSR. The results demonstrated that weed density and weed dry weight was lower in drill seeding than broadcast seeding by 26–36% and manual line-seeding by 16–24%, respectively, at 30 and 60 days after crop emergence (DAE). Among herbicides, post-emergence application (17 DAE) of azimsulfuron was most effective in controlling weeds compared to early post application of bispyribac-sodium and bensulfuron-methyl+pretilachlor. Weed competition in the weedy check treatment resulted 58% reduction in rice yield. Among establishment methods, drill-seeding was most profitable with US 685ha−1highernetincomethanbroadcastseedingprimarilyduetohigheryield.Amongweedcontroltreatments,azimsulfuronwasmostprofitableresultinginUS 685 ha−1 higher net income than broadcast seeding primarily due to higher yield. Among weed control treatments, azimsulfuron was most profitable resulting in US 160 and 736 ha−1 higher net income than weed free and weedy check, respectively. The specific energy was lowest for drill seeding among establishment method and azimsulfuron among weed control practices, suggesting lowest energy consumed in producing per unit of grain yield

    Not Available

    No full text
    Not AvailableBiochar plays a pivotal role in carbon storage-fractionation-mineralization process in soil. However, uncertainty still remains about the influence of biochar on these inter-related processes that links to C cycling in soil. A three years field experiment was initiated in 2013 at ICAR-National Rice Research Institute, Cuttack, India, to study the deviation in C mineralization and C fractions caused by the application of six doses of rice husk derived biochar (RHB), ranging from 0.5 t ha−1 to 10.0 t ha−1. The results showed an increase in cumulative CO2-C emission with increasing RHB rates. However, the model-fitted mineralization rates (dC/dt) did not show significant difference between treated and control soils at the end of incubation period in a laboratory study. In addition, microbial quotient and % C from RHB utilized showed a decreasing trend with increasing rates of RHB application, establishing the carbon sequestration potential of RHB. The highest rate (10.0 t ha−1) of RHB application accumulated maximum total organic C (3.26%) and a larger share of non-labile C (63.8%) among the treatments. An increase in rice grain yield (1–24%, depending on rate of RHB application) was observed with increasing rates of RHB which further established that RHB application not only enhanced C storage but also enhanced the productivity of rice by enhancing the soil fertility.ICA
    corecore