2 research outputs found
Not Available
Not AvailableBacterial esterases are gaining the importance in pharmaceuticals and agrochemical industries due to their excellent biocatalytic properties and a wide range of applications. In the present study, a novel gene encoding an esterase (designated as Est-CR) was identified from shotgun metagenomic sequencing data of camel rumen (Camelus dromedarius) liquor. The open reading frame consisted of 1,224bp, which showed 84.03% sequence identity to Bacteroidales bacterium, corresponding to a protein of 407 amino acids and has a catalytic domain belonging to an esterase. Est-CR belonged to family V with GLSMG domain. The purified enzyme with a molecular mass of 62.64 kDa was checked on SDS-PAGE, and its expression was confirmed by western blotting. The enzyme was active and stable over a broad range of temperature (35–65 °C), displayed the maximum activity at 50 °C and pH 7.0. Individually all metal ions inhibited the enzyme activity, while in combination, K2+, Ca2+, Mg2+ and Mn2+ metal ions enhanced the enzyme activity. The detergents strongly inhibited the activity, while EDTA (10 mM) increased the activity of the Est-CR enzyme. The enzyme showed specificity to short-chain substrates and displayed an optimum activity against butyrate ester. This novel enzyme might serve as a promising candidate to meet some harsh industrial processes enzymatic needs.Not Availabl
Not Available
Not AvailableBacterial esterases are gaining the importance in pharmaceuticals and agrochemical industries due to their excellent biocatalytic properties and a wide range of applications. In the present study, a novel gene encoding an esterase (designated as Est-CR) was identified from shotgun metagenomic sequencing data of camel rumen (Camelus dromedarius) liquor. The open reading frame consisted of 1,224bp, which showed 84.03% sequence identity to Bacteroidales bacterium, corresponding to a protein of 407 amino acids and has a catalytic domain belonging to an esterase. Est-CR belonged to family V with GLSMG domain. The purified enzyme with a molecular mass of 62.64 kDa was checked on SDS-PAGE, and its expression was confirmed by western blotting. The enzyme was active and stable over a broad range of temperature (35–65 °C), displayed the maximum activity at 50 °C and pH 7.0. Individually all metal ions inhibited the enzyme activity, while in combination, K2+, Ca2+, Mg2+ and Mn2+ metal ions enhanced the enzyme activity. The detergents strongly inhibited the activity, while EDTA (10 mM) increased the activity of the Est-CR enzyme. The enzyme showed specificity to short-chain substrates and displayed an optimum activity against butyrate ester. This novel enzyme might serve as a promising candidate to meet some harsh industrial processes enzymatic needs.Not Availabl