5 research outputs found

    Cortactin is necessary for E-cadherin–mediated contact formation and actin reorganization

    Get PDF
    Classical cadherin adhesion molecules are key determinants of cell–cell recognition during development and in post-embryonic life. A decisive step in productive cadherin-based recognition is the conversion of nascent adhesions into stable zones of contact. It is increasingly clear that such contact zone extension entails active cooperation between cadherin adhesion and the force-generating capacity of the actin cytoskeleton. Cortactin has recently emerged as an important regulator of actin dynamics in several forms of cell motility. We now report that cortactin is recruited to cell–cell adhesive contacts in response to homophilic cadherin ligation. Notably, cortactin accumulates preferentially, with Arp2/3, at cell margins where adhesive contacts are being extended. Recruitment of cortactin is accompanied by a ligation-dependent biochemical interaction between cortactin and the cadherin adhesive complex. Inhibition of cortactin activity in cells blocked Arp2/3-dependent actin assembly at cadherin adhesive contacts, significantly reduced cadherin adhesive contact zone extension, and perturbed both cell morphology and junctional accumulation of cadherins in polarized epithelia. Together, our findings identify a necessary role for cortactin in the cadherin–actin cooperation that supports productive contact formation

    Cortactin is necessary for E-cadherin–mediated contact formation and actin reorganization

    Get PDF
    Classical cadherin adhesion molecules are key determinants of cell–cell recognition during development and in post-embryonic life. A decisive step in productive cadherin-based recognition is the conversion of nascent adhesions into stable zones of contact. It is increasingly clear that such contact zone extension entails active cooperation between cadherin adhesion and the force-generating capacity of the actin cytoskeleton. Cortactin has recently emerged as an important regulator of actin dynamics in several forms of cell motility. We now report that cortactin is recruited to cell–cell adhesive contacts in response to homophilic cadherin ligation. Notably, cortactin accumulates preferentially, with Arp2/3, at cell margins where adhesive contacts are being extended. Recruitment of cortactin is accompanied by a ligation-dependent biochemical interaction between cortactin and the cadherin adhesive complex. Inhibition of cortactin activity in cells blocked Arp2/3-dependent actin assembly at cadherin adhesive contacts, significantly reduced cadherin adhesive contact zone extension, and perturbed both cell morphology and junctional accumulation of cadherins in polarized epithelia. Together, our findings identify a necessary role for cortactin in the cadherin–actin cooperation that supports productive contact formation

    Cortactin Is a Functional Target of E-cadherin-activated Src Family Kinases in MCF7 Epithelial Monolayers*

    No full text
    Src family kinases (SFKs) signal in response to E-cadherin to support cadherin adhesion and the integrity of cell-cell contacts (McLachlan, R. W., Kraemer, A., Helwani, F. M., Kovacs, E. M., and Yap, A. S. (2007) Mol. Biol. Cell 18, 3214–3223). We now identify the actin-regulatory protein, cortactin, as a target of E-cadherin-activated SFK signaling. Tyr-phosphorylated cortactin was found at cell-cell contacts in established epithelial monolayers, and cortactin became acutely tyrosine-phosphorylated when E-cadherin adhesion was engaged. In all circumstances, cortactin tyrosine phosphorylation was blocked by inhibiting SFK signaling. Importantly, Tyr-phosphorylated cortactin was necessary to preserve the integrity of cadherin contacts and the perijunctional actin cytoskeleton. Moreover, expression of a phosphomimetic cortactin mutant could prevent SFK blockade from disrupting cadherin organization, thereby placing cortactin functionally downstream of SFK signaling at cadherin adhesions. We conclude that SFK and cortactin constitute an important signaling pathway that functionally links E-cadherin adhesion and the actin cytoskeleton

    E-Cadherin Adhesion Activates c-Src Signaling at Cell–Cell Contacts

    Get PDF
    Cadherin-based cell–cell contacts are prominent sites for phosphotyrosine signaling, being enriched in tyrosine-phosphorylated proteins and tyrosine kinases and phosphatases. The functional interplay between cadherin adhesion and tyrosine kinase signaling, however, is complex and incompletely understood. In this report we tested the hypothesis that cadherin adhesion activates c-Src signaling and sought to assess its impact on cadherin function. We identified c-Src as part of a cadherin-activated cell signaling pathway that is stimulated by ligation of the adhesion receptor. However, c-Src has a biphasic impact on cadherin function, exerting a positive supportive role at lower signal strengths, but inhibiting function at high signal strengths. Inhibiting c-Src under circumstances when it is activated by cadherin adhesion decreased several measures of cadherin function. This suggests that the cadherin-activated c-Src signaling pathway serves positively to support cadherin function. Finally, our data implicate PI3-kinase signaling as a target for cadherin-activated c-Src signaling that contributes to its positive impact on cadherin function. We conclude that E-cadherin signaling is an important activator of c-Src at cell–cell contacts, providing a key input into a signaling pathway where quantitative changes in signal strength may result in qualitative differences in functional outcome
    corecore