1,796 research outputs found

    Intrabeam Scattering Studies at CesrTA

    Full text link
    Intrabeam scattering (IBS) limits the emittance and single-bunch current that can be achieved in electron or positron storage ring colliders, damping rings, and light sources. Much theoretical work on IBS exists, and while the theories have been validated in hadron and ion machines, the presence of strong damping makes IBS in lepton machines a different phenomenon. We present the results of measurements at CesrTA of IBS dominated beams, and compare the data with theory. The beams we study have parameters typical of those specified for the next generation of wiggler dominated storage rings: low emittance, small bunch length, and few GeV energy. Our measurements are in good agreement with IBS theory, provided a tail-cut procedure is applied.Comment: 14 pages, 15 figure

    The Electromagnetic Mass Differences of Pions and Kaons

    Get PDF
    We use the Cottingham method to calculate the pion and kaon electromagnetic mass differences with as few model dependent inputs as possible. The constraints of chiral symmetry at low energy, QCD at high energy and experimental data in between are used in the dispersion relation. We find excellent agreement with experiment for the pion mass difference. The kaon mass difference exhibits a strong violation of the lowest order prediction of Dashen's theorem, in qualitative agreement with several other recent calculations.Comment: 40 pages, Latex, needs axodraw. and psfig. macros, 4 figure

    Properties of the a1 Meson from Lattice QCD

    Full text link
    We determine the mass and decay constant of the a1a_1 meson using Monte Carlo simulation of lattice QCD. We find Ma1=1250±80M_{a_1} = 1250 \pm 80 MeV and fa1=0.30±0.03 (GeV)2f_{a_1} = 0.30 \pm 0.03 ~({\rm GeV})^2, in good agreement with experiment.Comment: 9 page uu-encoded compressed postscript file. version appearing in Phys. Rev. Lett. 74 (1995) 459

    Axial Vector JPC=1++J^{PC}=1^{++} Charmonium and Bottomonium Hybrid Mass Predictions with QCD Sum-Rules

    Full text link
    Axial vector (JPC=1++)(J^{PC}=1^{++}) charmonium and bottomonium hybrid masses are determined via QCD Laplace sum-rules. Previous sum-rule studies in this channel did not incorporate the dimension-six gluon condensate, which has been shown to be important for 11^{--} and 0+0^{-+} heavy quark hybrids. An updated analysis of axial vector charmonium and bottomonium hybrids is presented, including the effects of the dimension-six gluon condensate. The axial vector charmonium and bottomonium hybrid masses are predicted to be 5.13 GeV and 11.32 GeV, respectively. We discuss the implications of this result for the charmonium-like XYZ states and the charmonium hybrid multiplet structure observed in recent lattice calculations.Comment: 10 pages, 7 figures. Updated to match published versio

    Observation of the Dalitz Decay Ds+Ds+e+eD_{s}^{*+} \to D_{s}^{+} e^{+} e^{-}

    Full text link
    Using 586 pb1\textrm{pb}^{-1} of e+ee^{+}e^{-} collision data acquired at s=4.170\sqrt{s}=4.170 GeV with the CLEO-c detector at the Cornell Electron Storage Ring, we report the first observation of Ds+Ds+e+eD_{s}^{*+} \to D_{s}^{+} e^{+} e^{-} with a significance of 5.3σ5.3 \sigma. The ratio of branching fractions \calB(D_{s}^{*+} \to D_{s}^{+} e^{+} e^{-}) / \calB(D_{s}^{*+} \to D_{s}^{+} \gamma) is measured to be [0.720.13+0.15(stat)±0.10(syst)][ 0.72^{+0.15}_{-0.13} (\textrm{stat}) \pm 0.10 (\textrm{syst})]%, which is consistent with theoretical expectations

    Suppressed Decays of D_s^+ Mesons to Two Pseudoscalar Mesons

    Get PDF
    Using data collected near the Ds*+ Ds- peak production energy Ecm = 4170 MeV by the CLEO-c detector, we study the decays of Ds+ mesons to two pseudoscalar mesons. We report on searches for the singly-Cabibbo-suppressed Ds+ decay modes K+ eta, K+ eta', pi+ K0S, K+ pi0, and the isospin-forbidden decay mode Ds+ to pi+ pi0. We normalize with respect to the Cabibbo-favored Ds+ modes pi+ eta, pi+ eta', and K+ K0S, and obtain ratios of branching fractions: Ds+ to K+ eta / Ds+ to pi+ eta = (8.9 +- 1.5 +- 0.4)%, Ds+ to K+ eta' / Ds+ to pi+ eta' = (4.2 +- 1.3 +- 0.3)%, Ds+ to pi+ K0S / Ds+ to K+ K0S = (8.2 +- 0.9 +- 0.2)%, Ds+ to K+ pi0 / Ds+ to K+ K0S = (5.0 +- 1.2 +- 0.6)%, and Ds+ to pi+ pi0 / Ds+ to K+ K0S < 4.1% at 90% CL, where the uncertainties are statistical and systematic, respectively.Comment: 9 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2007/, Submitted to PR
    corecore