235 research outputs found

    Proposal for an Integrated Raman-free Correlated Photon Source

    Full text link
    We propose a dual-pump third-order nonlinear scheme for producing pairs of correlated photons that is less susceptible to Raman noise than typical spontaneous four wave mixing methods (SFWM). Beginning with the full multimode Hamiltonian we derive a general expression for the joint spectral amplitude, from which the probability of producing a pair of photons can be calculated. As an example, we demonstrate that a probability of 0.028 pairs per pulse can be achieved in an appropriately designed fused silica microfiber. As compared with single pump SFWM in standard fiber, we calculate that our process shows significant suppression of the spontaneous Raman scattering and an improvement in the signal to noise ratio.Comment: 7 pages, 3 figures (two containing 2 subfigures

    Coherence in parametric fluorescence

    Full text link
    We investigate spontaneous four wave mixing (SFWM) in a single-channel side-coupled integrated spaced sequence of resonators (SCISSOR). Analytic expressions for the number of photon pairs generated, as well as the biphoton wave function (joint spectral amplitude) describing the pairs, are derived and numerically computed for different pump pulse durations and numbers of ring resonators. In the limit of a long input pump pulse, we show a strong analogy between super-linear scaling of generation efficiency with respect to the number of rings in the structure and Dicke superradiance. More generally, we discuss in detail the factors that influence the shape of the biphoton wave function, as well as the conditions for observing super-SFWM

    Degenerate Squeezing in Waveguides: A Unified Theoretical Approach

    Full text link
    We consider pulsed-pump spontaneous parametric downconversion (SPDC) as well as pulsed single- and dual-pump spontaneous four-wave mixing processes in waveguides within a unified Hamiltonian theoretical framework. Working with linear operator equations in kk-space, our approach allows inclusion of linear losses, self- and cross-phase modulation, and dispersion to any order. We describe state evolution in terms of second-order moments, for which we develop explicit expressions. We use our approach to calculate the joint spectral amplitude of degenerate squeezing using SPDC analytically in the perturbative limit, benchmark our theory against well-known results in the limit of negligible group velocity dispersion, and study the suitability of recently proposed sources for quantum sampling experiments.Comment: All of the Python code used in this work is available on GitHub https://github.com/XanaduAI/kerr-squeezin

    Tuneable quantum interference in a 3D integrated circuit

    Full text link
    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract a Fisher information approaching a theoretical maximum, demonstrating the capability of the device for quantum enhanced phase measurements.Comment: 11 pages, 24 figure

    The effect of scattering loss on connections between classical and quantum processes in second-order nonlinear waveguides

    Full text link
    We show that a useful connection exists between spontaneous parametric downconversion (SPDC) and sum frequency generation in nonlinear optical waveguides with arbitrary scattering loss, while the same does not hold true for SPDC and difference frequency generation. This result deepens the relationship between quantum and classical second-order nonlinear optical processes in waveguides, and identifies the most accurate characterization of their quantum performance in the presence of loss based solely on classical measurements
    • …
    corecore