4 research outputs found

    Higher Age (≥60 Years) Increases the Risk for Adverse Events during Autologous Hematopoietic Stem Cell Transplantation.

    Get PDF
    Autologous hematopoietic stem cell transplantation (autoHSCT) is a standard of care for patients with hemato-oncologic diseases. This procedure is highly regulated, and a quality assurance system needs to be in place. Deviations from defined processes and outcomes are reported as adverse events (AEs: any untoward medical occurrence temporally associated with an intervention that may or may not have a causal relationship), including adverse reactions (ARs: a response to a medicinal product which is noxious and unintended). Only a few reports on AEs cover the procedure of autoHSCT from collection until infusion. Our aim was to investigate the occurrence and severity of AEs in a large data set of patients who were treated by autoHSCT. In this retrospective, observational, single-center study on 449 adult patients during the years 2016-2019, AEs occurred in 19.6% of the patients. However, only 6.0% of patients had ARs, which is a low rate compared to the percentages (13.5-56.9%) found in other studies; 25.8% of the AEs were serious and 57.5% were potentially serious. Larger leukapheresis volumes, lower numbers of collected CD34+ cells and larger transplant volumes significantly correlated with the occurrence and number of AEs. Importantly, we found more AEs in patients >60 years (see graphical abstract). By preventing potentially serious AEs of quality and procedural issues, AEs could be reduced by 36.7%. Our results provide a broad view on AEs and point out steps and parameters for the potential optimization of the autoHSCT procedure, especially in elderly patients

    Targeting Telomere Biology in Acute Lymphoblastic Leukemia.

    Get PDF
    Increased cell proliferation is a hallmark of acute lymphoblastic leukemia (ALL), and genetic alterations driving clonal proliferation have been identified as prognostic factors. To evaluate replicative history and its potential prognostic value, we determined telomere length (TL) in lymphoblasts, B-, and T-lymphocytes, and measured telomerase activity (TA) in leukocytes of patients with ALL. In addition, we evaluated the potential to suppress the in vitro growth of B-ALL cells by the telomerase inhibitor imetelstat. We found a significantly lower TL in lymphoblasts (4.3 kb in pediatric and 2.3 kb in adult patients with ALL) compared to B- and T-lymphocytes (8.0 kb and 8.2 kb in pediatric, and 6.4 kb and 5.5 kb in adult patients with ALL). TA in leukocytes was 3.2 TA/C for pediatric and 0.7 TA/C for adult patients. Notably, patients with high-risk pediatric ALL had a significantly higher TA of 6.6 TA/C compared to non-high-risk patients with 2.2 TA/C. The inhibition of telomerase with imetelstat ex vivo led to significant dose-dependent apoptosis of B-ALL cells. These results suggest that TL reflects clonal expansion and indicate that elevated TA correlates with high-risk pediatric ALL. In addition, telomerase inhibition induces apoptosis of B-ALL cells cultured in vitro. TL and TA might complement established markers for the identification of patients with high-risk ALL. Moreover, TA seems to be an effective therapeutic target; hence, telomerase inhibitors, such as imetelstat, may augment standard ALL treatment

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore