8 research outputs found

    Monte Carlo Hamiltonian - From Statistical Physics to Quantum Theory

    Full text link
    Monte Carlo techniques have been widely employed in statistical physics as well as in quantum theory in the Lagrangian formulation. However, in some areas of application to quantum theories computational progress has been slow. Here we present a recently developed approach: the Monte Carlo Hamiltonian method, designed to overcome the difficulties of the conventional approach.Comment: StatPhys-Taiwan-1999, 6 pages, LaTeX using elsart.cl

    Tricolored Lattice Gauge Theory with Randomness: Fault-Tolerance in Topological Color Codes

    Get PDF
    We compute the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates, when both qubit and measurement errors are present. By mapping the problem onto a statistical-mechanical three-dimensional disordered Ising lattice gauge theory, we estimate via large-scale Monte Carlo simulations that color codes are stable against 4.5(2)% errors. Furthermore, by evaluating the skewness of the Wilson loop distributions, we introduce a very sensitive probe to locate first-order phase transitions in lattice gauge theories.Comment: 12 pages, 5 figures, 1 tabl

    Improved Lattice Gauge Field Hamiltonian

    Get PDF
    Lepage's improvement scheme is a recent major progress in lattice QCDQCD, allowing to obtain continuum physics on very coarse lattices. Here we discuss improvement in the Hamiltonian formulation, and we derive an improved Hamiltonian from a lattice Lagrangian free of O(a2)O(a^2) errors. We do this by the transfer matrix method, but we also show that the alternative via Legendre transformation gives identical results. We consider classical improvement, tadpole improvement and also the structure of L{\"u}scher-Weisz improvement. The resulting color-electric energy is an infinite series, which is expected to be rapidly convergent. For the purpose of practical calculations, we construct a simpler improved Hamiltonian, which includes only nearest-neighbor interactions.Comment: 30 pages, LaTe
    corecore