9 research outputs found

    Whole-body vibration and occupational physical performance: a review

    No full text
    © 2015 Springer-Verlag Berlin Heidelberg Introduction: In the occupational environment, there are a considerable number of stressors that can affect physical performance in job tasks. Whole-body vibration (WBV), which arises from vehicle transit, is one such stressor that has been demonstrated to alter human function in several ways. This study identifies the known physical changes to human function which result from WBV, to comment on changes which may translate to performance in physically demanding occupational tasks. Methods: A systematic review is performed on the literature relating to changes in the neuromuscular, physiological and biomechanical properties of the human body, when exposed to WBV. Selection criteria are constructed to synthesise articles which strictly relate to in-vehicle WBV and physical responses. Results: In total, 29 articles were identified which satisfied the criteria for inclusion. A range of physical responses produced from WBV are presented; however, little consistency exists in study design and the responses reported. Discussion: Given the inconsistency in the reported responses, the precise changes to human function remain unknown. However, there is sufficient evidence to warrant the design of studies which investigate occupationally relevant physical performance changes following WBV

    Radioiodination and Other Labeling Techniques

    No full text

    Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives

    No full text
    Saponins are widely distributed plant natural products with vast structural and functional diversity. They are typically composed of a hydrophobic aglycone, which is extensively decorated with functional groups prior to the addition of hydrophilic sugar moieties, to result in surface-active amphipathic compounds. The saponins are broadly classified as triterpenoids, steroids or steroidal glycoalkaloids, based on the aglycone structure from which they are derived. The saponins and their biosynthetic intermediates display a variety of biological activities of interest to the pharmaceutical, cosmetic and food sectors. Although their relevance in industrial applications has long been recognized, their role in plants is underexplored. Recent research on modulating native pathway flux in saponin biosynthesis has demonstrated the roles of saponins and their biosynthetic intermediates in plant growth and development. Here, we review the literature on the effects of these molecules on plant physiology, which collectively implicate them in plant primary processes. The industrial uses and potential of saponins are discussed with respect to structure and activity, highlighting the undoubted value of these molecules as therapeutics
    corecore