5 research outputs found

    The Effects of Extended Release Niacin in Combination with Omega 3 Fatty Acid Supplements in the Treatment of Elevated Lipoprotein (a)

    No full text
    Objective. To assess the effectiveness of niacin/fish oil combination therapy in reducing Lipoprotein (a) [Lp(a)] levels after twelve weeks of therapy. Background. Lipoprotein (a) accumulates in atherosclerotic lesions and promotes smooth muscle cell growth and is both atherogenic and thrombogenic. A clinical trials of combination therapy for the reduction of Lp(a) has not been previously reported. Methods. The study was an observational study following subjects with an elevated Lp(a) (>70 nmol/L) to assess impact of 12 weeks of combination Omega 3FA, niacin, and the Mediterranean diet on Lp(a). Results. Twenty three patients were enrolled with 7 patients lost to follow up and 2 patients stopped due to adverse events. The average Lp(a) reduction in the remaining 14 subjects after 12 weeks of combination therapy was 23%± 17% [=.003] with a significant association of the reduction of Lp(a) with increasing baseline levels of Lp(a) [R2=0.633, =.001]. Conclusions. There was a significant reduction in Lp(a) levels with combination therapy. A more pronounced effect was noted in patients with higher baseline levels of Lp(a)

    Better outcome of ablation for sustained outflow-tract ventricular tachycardia when tachycardia is inducible.

    No full text
    AIMS In patients presenting with spontaneous sustained ventricular tachycardia (VT) from the outflow-tract region without overt structural heart disease ablation may target premature ventricular contractions (PVCs) when VT is not inducible. We aimed to determine whether inducibility of VT affects ablation outcome. METHODS AND RESULTS Data from 54 patients (31 men; age, 52 ± 13 years) without overt structural heart disease who underwent catheter ablation for symptomatic sustained VT originating from the right- or left-ventricular outflow region, including the great vessels. A single morphology of sustained VT was inducible in 18 (33%, SM group) patients, and 11 (20%) had multiple VT morphologies (MM group). VT was not inducible in 25 (46%) patients (VTni group). After ablation, VT was inducible in none of the SM group and in two (17%) patients in the MM group. In the VTni group, ablation targeted PVCs and 12 (48%) patients had some remaining PVCs after ablation. During follow-up (21 ± 19 months), VT recurred in 46% of VTni group, 40% of MM inducible group, and 6% of the SM inducible group (P = 0.004). Analysis of PVC morphology in the VTi group further supported the limitations of targeting PVCs in this population. CONCLUSION Absence of inducible VT and multiple VT morphologies are not uncommon in patients with documented sustained outflow-tract VT without overt structural heart disease. Inducible VT is associated with better outcomes, suggesting that attempts to induce VT to guide ablation are important in this population
    corecore