231 research outputs found

    Further structural constraints and uncertainties of a thin laterally varying ultralow-velocity layer at the base of the mantle

    Get PDF
    Constraints and uncertainties are presented for modeling of an ultralow-velocity zone layer (ULVZ) at the base of Earth's mantle using an SKS wave with small segments of P wave diffraction at the SKS core entry and exit locations, called SP_dKS. Source or receiver effects are ruled out as causes for the SP_dKS anomalies used to map ULVZ structure, since systematic SP_dKS-SKS travel time moveout behavior is present in profiles of recordings of a given earthquake at many seismographic stations and also for many events recorded at one station. The southwest Pacific region produces strong variability in observed SP_dKS/SKS amplitude ratios (compared to synthetic seismograms), which geographically corresponds to an anomalous ULVZ region. Accurate determination of absolute ULVZ thicknesses requires knowledge of, in addition to magnitude of P wave velocity (V_p) reduction in the layer, the magnitude of S wave velocity (V_S) reduction and density (ρ) perturbation (if any). Synthetic seismogram experiments demonstrate several key points regarding uncertainties and constraints in modeling ULVZ structure: (1) thicker layers (up to 300 km thick) with mild reductions (e.g., −2.5 to −5.0%) cannot reproduce the anomalous SP_dKS behavior seen in the data; (2) for ULVZ layers less than 10 km thick, strong trade-offs exist between discontinuous velocity reductions and linear gradient reductions over a thicker zone; (3) uncertainties preclude precise determination of magnitude of δV_P and δV_S reductions, as well as the δV_S:δV_P ratio; (4) large density increases within the ULVZ (e.g., up to 60% and more) can efficiently broaden and delay the peak of the energy that we identify as SP_dKS for models with strong velocity reductions in the layer; (5) models with extreme Q reductions in the ULVZ can affect SP_dKS waveforms, and dampen spurious ringing energy present in Sd waveshapes due to the ULVZ; and (6) the minimum required V_p reduction for the most anomalous data (around −10%) trades off with thinner ULVZ structures containing larger velocity reductions (with possible density increases as well)

    Time functions appropriate for nuclear explosions

    Get PDF
    The source-time function of megaton class nuclear explosions has been determined by modeling teleseismic short- and long-period body waves with synthetic seismograms. A simple analytic expression for the time function was used to closely match observations from both Novaya Zemlya and the U.S. test site at Amchitka. It was found that the time functions of all the events have a substantial overshoot. It was also found that, although the durations of the time functions did appear to depend on yield, the effect was very difficult to observe even in short-period records. All synthetics were computed by assuming a simple point source in a layered elastic half-space. It was not necessary to appeal to any nonlinear processes in the source region to explain the observations. Numerical calculations are presented to show that tectonic release triggered by earthquakes does not have a substantial effect on the P waves unless the long-period level of the tectonic event is as large or larger than the long-period level of the explosion. The pS wave, on the other hand, is shown to be very sensitive to even a moderate amount of tectonic release

    Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific

    Get PDF
    We explore lowermost mantle structure beneath the Pacific with long‐period recordings of the seismic core phases SKS, SP_dKS, and SKKS from 25 deep earthquakes. SP_dKS and SKKS are anomalously delayed relative to SKS for lower mantle paths beneath the southwest Pacific. Late SP_dKS arrivals are explained by a laterally varying mantle‐side boundary layer at the CMB, having P‐velocity reductions of up to 10% and thickness up to 40 km. This layer is detected beneath a tomographically resolved large‐scale low velocity feature in the lower mantle beneath the central‐Pacific. SKS, SP_dKS, and SKKS data for the generally faster‐than‐average circum‐Pacific lower mantle are well‐fit by models lacking any such low‐velocity boundary layer. The slow boundary layer beneath the central Pacific may be a localized zone of partial melt, or perhaps a chemically distinct layer, with its location linked to overlying upwelling motions

    Northridge aftershocks, a source study with TERRAscope data

    Get PDF
    Broadband and long-period displacement waveforms from a selection of Northridge aftershocks recorded by the TERRAscope array are modeled to study source characteristics. Source mechanisms and moments are determined with long-period data using an algorithm developed by Zhao and Helmberger (1994). These results are compared with those by Hauksson et al. (1995) and Thio and Kanamori (1996). The width of the direct pulses at the nearest stations PAS and CALB are measured as indications of the source duration. Another measurement of the source-time functions of these earthquakes is obtained by comparing the short-period to long-period energy ratio in the data to that in the synthetics. These measurements are used to estimate the relative stress drop using a formula given by Cohn et al. (1982). The depth distribution of the relative stress drops indicates that the largest stress drops are in the depth range of 5 to 15 km for an aftershock population of 24 events. A correlation of extended surface wave train with source depth is demonstrated for paths crossing the San Fernando basin

    Time functions appropriate for deep earthquakes

    Get PDF
    The seismic signatures of isolated body phases from many deep-focus earthquakes were analyzed in the time domain. Most shocks were found to be multiple events when examined in detail. The time history derived from P waves for single events predict synthetic S-wave shapes that match the observations, indicating compatibility with shear dislocation theory. Several other features of source functions in the time domain have been brought to light

    Source Estimation of Finite Faults from Broadband Regional Networks

    Get PDF
    Fast estimation of point-source parameters for earthquakes has progressed much in recent years due to the development of broadband seismic networks. The expansion of these networks now provides the opportunity to investigate second-order effects such as source finiteness for regional and local events on a routine basis. This potential motivates the development of methods to quickly generate synthetic seismograms for finite sources. This is possible when the fault dimension is small compared to the source-receiver distance and when the structure around the source region is relatively simple. To study the directivity for a finite source, we discretize the fault region into a set of elements represented as point sources. We then generate the generalized rays for the best-fitting point-source location and derive for each separate ray the response for neighboring point sources using power series expansions. The response for a finite fault is then a summation over rays and elements. If we sum over elements first, we obtain an effective far-field source-time function for each ray, which is sensitive to the direction of rupture. These far-field source-time functions are convolved with the corresponding rays, and the results are summed to form the total response. A simple application of the above method is demonstrated with the tangential motions observed from the 1991 Sierra Madre earthquake. For this event, we constrain the fault dimension to be about 3 km with rupture toward the west, which is compatible with other more detailed studies

    Slip distribution and tectonic implication of the 1999 Chi‐Chi, Taiwan, Earthquake

    Get PDF
    We report on the fault complexity of the large (M_w = 7.6) Chi‐Chi earthquake obtained by inverting densely and well‐distributed static measurements consisting of 119 GPS and 23 doubly integrated strong motion records. We show that the slip of the Chi-Chi earthquake was concentrated on the surface of a ”wedge shaped” block. The inferred geometric complexity explains the difference between the strike of the fault plane determined by long period seismic data and surface break observations. When combined with other geophysical and geological observations, the result provides a unique snapshot of tectonic deformation taking place in the form of very large (>10m) displacements of a massive wedge‐shaped crustal block which may relate to the changeover from over‐thrusting to subducting motion between the Philippine Sea and the Eurasian plates

    Source Description of the 1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis

    Get PDF
    We present a new procedure for the determination of rupture complexity from a joint inversion of static and seismic data. Our fault parameterization involves multiple fault segments, variable local slip, rake angle, rise time, and rupture velocity. To separate the spatial and temporal slip history, we introduce a wavelet transform that proves effective at studying the time and frequency characteristics of the seismic waveforms. Both data and synthetic seismograms are transformed into wavelets, which are then separated into several groups based on their frequency content. For each group, we use error functions to compare the wavelet amplitude variation with time between data and synthetic seismograms. The function can be an L1 + L2 norm or a correlative function based on the amplitude and scale of wavelet functions. The objective function is defined as the weighted sum of these functions. Subsequently, we developed a finite-fault inversion routine in the wavelet domain. A simulated annealing algorithm is used to determine the finite-fault model that minimizes the objective function described in terms of wavelet coefficients. With this approach, we can simultaneously invert for the slip amplitude, slip direction, rise time, and rupture velocity efficiently. Extensive experiments conducted on synthetic data are used to assess the ability to recover rupture slip details. We, also explore slip-model stability for different choices of layered Earth models assuming the geometry encountered in the 1999 Hector Mine, California, earthquake

    Modeling two-dimensional structure at the core-mantle boundary

    Get PDF
    Recent studies of SKS waveform modeling emphasize the strong variation of seismic properties at the core-mantle boundary (CMB) and the need for two-dimensional and three-dimensional waveform modeling capabilities. In particular, the bifurcation of SKS into SP _dKS and SKP _dS near 110° shows strong regional variations. The first of these phases has a P wave diffraction along the bottom of the mantle near the source, while the latter phase occurs at the receiver end. Generalized ray theory proves effective in generating theoretical seismograms in this type of problem because each of these diffractions is associated with a particular transmission coefficient: T_(sp) which transmits shear waves into primary waves when crossing the CMB and T_(sp) which transmits the primary waves back into shear waves at the receiver end. Each region can then be isolated and have its separate fine structure, sharp or gradational. Two classes of boundaries are explored: the CMB as a simple, sharp interface and the CMB with a very low velocity transition layer (10% slower than reference models). The two diffractions produced by these structures have diagnostic arrival times and wave shapes and when combined with the geometric SKS produce distinct waveform characteristics not easily generated by other means. Since the ray paths associated with these three phases are virtually identical in the mantle and only differ along a short sample of CMB and in the one-dimensional fluid core, we can isolate the small localized CMB region sampled. Thus the waveform character of the extended SKS in the range of 105° to 120° becomes an excellent CMB probe which we demonstrate on a small sample of observations from the Fiji-Tonga region as recorded in North America
    • …
    corecore