518 research outputs found

    Observing tidal effects on the dynamics of the Ekström Ice Shelf with focus on quarterdiurnal and terdiurnal periods

    Get PDF
    Antarctica's ice shelves stabilize the ice sheet and, therefore, understanding processes affecting the mass budgets of ice shelves is important for estimating grounded ice loss. To study the ice shelf dynamics, we analyzed seismological and GNSS data from the Ekström Ice Shelf in Dronning Maud Land. We extracted probabilistic power spectral densities (PPSD) in the frequency band 3.4-6.8 Hz, typical of icequakes, from seismological data and observed pronounced signals in the PPSD with near 3 and 4 cycles per day (cpd) corresponding to tidal overharmonics, in addition to the main tidal constituents near 1 and 2 cpd. GNSS data reveal the same components in ice flow speed but not in vertical displacements. Generally, tide-induced grounding line migration modulates the flow velocity of an entire ice shelf. We find that this velocity modulation causes the increased icequake activity in the tidal overharmonics with 3 and 4 cpd in an ice shear zone where the flow velocity drops to nearly zero

    Synergistic Use of Single-Pass Interferometry and Radar Altimetry to Measure Mass Loss of NEGIS Outlet Glaciers between 2011 and 2014

    Get PDF
    Mass balances of individual glaciers on ice sheets have been previously reported by forming a mass budget of discharged ice and modelled ice sheet surface mass balance or a complementary method which measures volume changes over the glaciated area that are subsequently converted to glacier mass change. On ice sheets, volume changes have been measured predominantly with radar and laser altimeters but InSAR DEM differencing has also been applied on smaller ice bodies. Here, we report for the first time on the synergistic use of volumetric measurements from the CryoSat-2 radar altimetry mission together with TanDEM-X DEM differencing and calculate the mass balance of the two major outlet glaciers of the Northeast Greenland Ice Stream: Zachariæ Isstrøm and Nioghalvfjerdsfjorden (79North). The glaciers lost 3.59±1.15 G t a−1 and 1.01±0.95 G t a−1 , respectively, between January 2011 and January 2014. Additionally, there has been substantial sub-aqueous mass loss on Zachariæ Isstrøm of more than 11 G t a−1 . We attribute the mass changes on both glaciers to dynamic downwasting. The presented methodology now permits using TanDEM-X bistatic InSAR data in the context of geodetic mass balance investigations for large ice sheet outlet glaciers. In the future, this will allow monitoring the mass changes of dynamic outlet glaciers with high spatial resolution while the superior vertical accuracy of CryoSat-2 can be used for the vast accumulation zones in the ice sheet interior

    Seasonal Observations at 79°N Glacier (Greenland) From Remote Sensing and in situ Measurements

    Get PDF
    This study investigates seasonal ice dynamics of Nioghalvfjerdsfjorden or 79°N Glacier, one of the major outlet glaciers of the North East Greenland Ice Stream. Based on remote sensing data and in-situ GPS measurements we show that surface melt water is quickly routed to the ice-bed interface with a direct response on ice velocities measured at the surface. From the temporally highly resolved GPS time series we found summer peak velocities of up to 22 faster than their winter baseline. These average out to 9 above winter velocities when relying on temporally lower resolved velocity estimates from TerraSAR-X intensity offset tracking. From our GPS time series we also found short term ice acceleration after the melt season. By utilizing optical satellite imagery and interferometrically derived digital elevation models we were able to link the post melt season speed-up to a rapid lake drainage event (<24 h) with an estimated drainage volume of 28x10⁶ m³. We further highlight that GPS measurements are needed to resolve short term velocity fluctuations with low amplitudes, whereas remote sensing estimates are rather useful for the calculation of general trends in velocity behavior

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow

    Quantifying rapid permafrost thaw with computer vision and graph theory

    Get PDF
    With the Earth’s climate rapidly warming, the Arctic represents one of the most vulnerable regions to environmental change. Permafrost, as a key element of the Arctic system, stores vast amounts of organic carbon that can be microbially decomposed into the greenhouse gases CO2 and CH4 upon thaw. Extensive thawing of these permafrost soils therefore has potentially substantial consequences to greenhouse gas concentrations in the atmosphere. In addition, thaw of ice-rich permafrost lastingly alters the surface topography and thus the hydrology. Fires represent an important disturbance in boreal permafrost regions and increasingly also in tundra regions as they combust the vegetation and upper organic soil layers that usually provide protective insulation to the permafrost below. Field studies and local remote sensing studies suggest that fire disturbances may trigger rapid permafrost thaw, with consequences often already observable in the first years post-disturbance. In polygonal ice-wedge landscapes, this becomes most prevalent through melting ice wedges and degrading troughs. The further these ice wedges degrade; the more troughs will likely connect and build an extensive hydrological network with changing patterns and degrees of connectivity that influences hydrology and runoff throughout large regions. While subsiding troughs over melting ice wedges may host new ponds, an increasing connectivity may also subsequently lead to more drainage of ponds, which in turn can limit further thaw and help stabilize the landscape. Whereas fire disturbances may accelerate the initiation of this process, the general warming of permafrost observed across the Arctic will eventually result in widespread degradation of polygonal landscapes. To quantify the changes in such dynamic landscapes over large regions, remote sensing data offers a valuable resource. However, considering the vast and ever-growing volumes of Earth observation data available, highly automated methods are needed that allow extracting information on the geomorphic state and changes over time of ice-wedge trough networks. In this study, we investigate these changing landscapes and their environmental implications in fire scars in Northern and Western Alaska. We developed a computer vision algorithm to automatically extract ice-wedge polygonal networks and the microtopography of the degrading troughs from high-resolution, airborne laserscanning-based digital terrain models (1 m spatial resolution; full-waveform Riegl Q680i LiDAR sensor). To derive information on the availability of surface water, we used optical and near-infrared aerial imagery at spatial resolutions of up to 5 cm captured by the Modular Aerial Camera System (MACS) developed by DLR. We represent the networks as graphs (a concept from the computer sciences to describe complex networks) and apply methods from graph theory to describe and quantify hydrological network characteristics of the changing landscape. Due to a lack of historical very-high-resolution data, we cannot investigate a dense time series of a single representative study area on the evolution of the microtopographic and hydrologic network, but rather leverage the possibilities of a space-for-time substitution. We thus investigate terrain models and multispectral data from 2019 and 2021 of ten study areas located in ten fire scars of different ages (up to 120 years between date of disturbance and date of data acquisition). With this approach, we can infer past and future states of degradation from the currently prevailing spatial patterns and show how this type of disturbed landscape evolves over time. Representing such polygonal landscapes as graphs and reducing large amounts of data into few quantifiable metrics, supports integration of results into i.e., numerical models and thus largely facilitates the understanding of the underlying complex processes of GHG emissions from permafrost thaw. We highlight these extensive possibilities but also illustrate the limitations encountered in the study that stem from a reduced availability and accessibility to pan-Arctic very-high-resolution Earth observation datasets
    corecore