3,535 research outputs found

    Optical second harmonic generation from Wannier excitons

    Full text link
    Excitonic effects in the linear optical response of semiconductors are well-known and the subject of countless experimental and theoretical studies. For the technologically important second order nonlinear response, however, description of excitonic effects has proved to be difficult. In this work, a simplified three-band Wannier exciton model of cubic semiconductors is applied and a closed form expression for the complex second harmonic response function including broadening is derived. Our calculated spectra are found to be in excellent agreement with the measured response near the band edge. In addition, a very substantial enhancement of the nonlinear response is predicted for the transparency region

    Coulomb correlation effects in zinc monochalcogenides

    Full text link
    Electronic structure and band characteristics for zinc monochalcogenides with zinc-blende- and wurtzite-type structures are studied by first-principles density-functional-theory calculations with different approximations. It is shown that the local-density approximation underestimates the band gap and energy splitting between the states at the top of the valence band, misplaces the energy levels of the Zn-3d states, and overestimates the crystal-field-splitting energy. Regardless of the structure type considered, the spin-orbit-coupling energy is found to be overestimated for ZnO and underestimated for ZnS with wurtzite-type structure, and more or less correct for ZnSe and ZnTe with zinc-blende-type structure. The order of the states at the top of the valence band is found to be anomalous for ZnO in both zinc-blende- and wurtzite-type structure, but is normal for the other zinc monochalcogenides considered. It is shown that the Zn-3d electrons and their interference with the O-2p electrons are responsible for the anomalous order. The typical errors in the calculated band gaps and related parameters for ZnO originate from strong Coulomb correlations, which are found to be highly significant for this compound. The LDA+U approach is by and large found to correct the strong correlation of the Zn-3d electrons, and thus to improve the agreement with the experimentally established location of the Zn-3d levels compared with that derived from pure LDA calculations

    THEORY OF THE STRUCTURE OF THE SELF-TRAPPED EXCITON IN QUARTZ

    Get PDF
    Quartz is an insulator with an extremely wide band gap in the vacuum ultra-violet. However, under irradiation from high-energy electrons or X-rays, samples of high purity emit a luminescence band in the blue, corresponding to a Stokes shift of approximately 7 eV. This large Stokes shift has been ascribed to the self-trapping of an exciton in an otherwise perfect lattice owing to the distortion it induces; the authors review the evidence for this assignment, and describe electronic-structure calculations which reveal the structure of the distorted configuration and also explain various experimentally determined properties of the centre. The self-trapping process they postulate is a novel one as it is driven primarily by the electron component of the exciton

    Transferable Pair Potentials for CdS and ZnS Crystals

    Full text link
    A set of interatomic pair potentials is developed for CdS and ZnS crystals. We show that a simple energy function, which has been used to describe the properties of CdSe [J. Chem. Phys. 116, 258 (2002)], can be parametrized to accurately describe the lattice and elastic constants, and phonon dispersion relations of bulk CdS and ZnS in the wurtzite and rocksalt crystal structures. The predicted coexistence pressure of the wurtzite and rocksalt structures, as well as the equation of state are in good agreement with experimental observations. These new pair potentials enable the study of a wide range of processes in bulk and nanocrystalline II-VI semiconductor materials

    Carbonates in space - The challenge of low temperature data

    Full text link
    Carbonates have repeatedly been discussed as possible carriers of stardust emission bands. However, the band assignments proposed so far were mainly based on room temperature powder transmission spectra of the respective minerals. Since very cold calcite grains have been claimed to be present in protostars and in Planetary Nebulae such as NGC 6302, the changes of their dielectric functions at low temperatures are relevant from an astronomical point of view. We have derived the IR optical constants of calcite and dolomite from reflectance spectra - measured at 300, 200, 100 and 10K - and calculated small particle spectra for different grain shapes, with the following results: i) The absorption efficiency factors both of calcite and dolomite are extremely dependent on the particle shapes. This is due to the high peak values of the optical constants of CaCO3 and CaMg[CO3]2. ii) The far infrared properties of calcite and dolomite depend also very significantly on the temperature. Below 200K, a pronounced sharpening and increase in the band strengths of the FIR resonances occurs. iii) In view of the intrinsic strength and sharpening of the 44 mum band of calcite at 200-100K, the absence of this band -- inferred from Infrared Space Observatory data -- in PNe requires dust temperatures below 45K. iv) Calcite grains at such low temperatures can account for the '92' mum band, while our data rule out dolomite as the carrier of the 60-65 mum band. The optical constants here presented are publicly available in the electronic database http://www.astro.uni-jena.de/Laboratory/OCDBComment: 20 pages, 10 figures, accepted by ApJ, corrected typo

    Solar gamma-ray lines as probes of accelerated particle directionalities in flares

    Get PDF
    Anisotropies of charged particles accelerated in solar flares were studied by observing Doppler shifts of selected gamma-ray lines. The spectral shape was calculated of the 6.1-MeV line of O-16. If the accelerated particles are isotropic, the line remains centered at e sub 0 = 6129.4 keV, and its width (FWHM) is about 100 keV. For particle anisotropies that may be produced in solar flares, the line is shifted to lower energies by about 30 to 40 keV

    Tuning surface metallicity and ferromagnetism by hydrogen adsorption at the polar ZnO(0001) surface

    Full text link
    The adsorption of hydrogen on the polar Zn-ended ZnO(0001) surface has been investigated by density functional {\it ab-initio} calculations. An on top H(1x1) ordered overlayer with genuine H-Zn chemical bonds is shown to be energetically favorable. The H covered surface is metallic and spin-polarized, with a noticeable magnetic moment at the surface region. Lower hydrogen coverages lead to strengthening of the H-Zn bonds, corrugation of the surface layer and to an insulating surface. Our results explain experimental observations of hydrogen adsorption on this surface, and not only predict a metal-insulator transition, but primarily provide a method to reversible switch surface magnetism by varying the hydrogen density on the surface.Comment: 4 pages, 3 figure

    Relativistic separable dual-space Gaussian Pseudopotentials from H to Rn

    Full text link
    We generalize the concept of separable dual-space Gaussian pseudopotentials to the relativistic case. This allows us to construct this type of pseudopotential for the whole periodic table and we present a complete table of pseudopotential parameters for all the elements from H to Rn. The relativistic version of this pseudopotential retains all the advantages of its nonrelativistic version. It is separable by construction, it is optimal for integration on a real space grid, it is highly accurate and due to its analytic form it can be specified by a very small number of parameters. The accuracy of the pseudopotential is illustrated by an extensive series of molecular calculations

    Detection mechanism for ferroelectric domain boundaries with lateral force microscopy

    Full text link
    The contrast mechanism for the visualization of ferroelectric domain boundaries with lateral force microscopy is generally assumed to be caused by mechanical deformation of the sample due to the converse piezoelectric effect. We show, however, that electrostatic interactions between the charged tip and the electric fields arising from the surface polarization charges dominate the contrast mechanism. This explanation is sustained by quantitative analysis of the measured forces as well as by comparative measurements on different materials
    • 

    corecore