4,811 research outputs found

    The Dark Side of Performance Appraisals: A Study of University Librarians Across the U.S.

    Get PDF
    Performance appraisals are conducted regularly in professional organizations as a means to evaluate employee performance and overall company effectiveness. Employees and employers alike dread appraisal time; appraisals are often time consuming, tedious, and yield minimal positive results. Previous research has shown that employee perceptions of performance appraisals are important to consider when determining their overall effectiveness. In order to build new systems that could be viewed more positively by managers and employees, a deeper examination into the issues of performance appraisals, especially from the manager’s perspective, is needed. Our study looks at data gathered from a survey given to academic library directors, prompting them to evaluate the purposefulness of their current performance appraisal systems. Embedded in this survey is an open-ended response question, asking directors their perceptions of the PA system in their library. Our study seeks to determine if we can use text analytics create a better understanding of manager’s reactions and perceptions of PA systems and formats. We believe that the data gathered from the textual analysis will provide incremental validity into manager perceptions of performance appraisals and further insight into how organizations can improve their own processes

    Including lateral interactions into microkinetic models of catalytic reactions

    Get PDF
    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis. (c) 2007 American Institute of Physics

    ForestHash: Semantic Hashing With Shallow Random Forests and Tiny Convolutional Networks

    Full text link
    Hash codes are efficient data representations for coping with the ever growing amounts of data. In this paper, we introduce a random forest semantic hashing scheme that embeds tiny convolutional neural networks (CNN) into shallow random forests, with near-optimal information-theoretic code aggregation among trees. We start with a simple hashing scheme, where random trees in a forest act as hashing functions by setting `1' for the visited tree leaf, and `0' for the rest. We show that traditional random forests fail to generate hashes that preserve the underlying similarity between the trees, rendering the random forests approach to hashing challenging. To address this, we propose to first randomly group arriving classes at each tree split node into two groups, obtaining a significantly simplified two-class classification problem, which can be handled using a light-weight CNN weak learner. Such random class grouping scheme enables code uniqueness by enforcing each class to share its code with different classes in different trees. A non-conventional low-rank loss is further adopted for the CNN weak learners to encourage code consistency by minimizing intra-class variations and maximizing inter-class distance for the two random class groups. Finally, we introduce an information-theoretic approach for aggregating codes of individual trees into a single hash code, producing a near-optimal unique hash for each class. The proposed approach significantly outperforms state-of-the-art hashing methods for image retrieval tasks on large-scale public datasets, while performing at the level of other state-of-the-art image classification techniques while utilizing a more compact and efficient scalable representation. This work proposes a principled and robust procedure to train and deploy in parallel an ensemble of light-weight CNNs, instead of simply going deeper.Comment: Accepted to ECCV 201

    Multiple Sclerosis Followed by Neuromyelitis Optica Spectrum Disorder: From the National Multiple Sclerosis Society Case Conference Proceedings

    Get PDF
    A woman presented at age 18 years with partial myelitis and diplopia and experienced multiple subsequent relapses. Her MRI demonstrated T2 abnormalities characteristic of multiple sclerosis (MS) (white matter ovoid lesions and Dawson fingers), and CSF demonstrated an elevated IgG index and oligoclonal bands restricted to the CSF. Diagnosed with clinically definite relapsing-remitting MS, she was treated with various MS disease-modifying therapies and eventually began experiencing secondary progression. At age 57 years, she developed an acute longitudinally extensive transverse myelitis and was found to have AQP4 antibodies by cell-based assay. Our analysis of the clinical course, radiographic findings, molecular diagnostic methods, and treatment response characteristics support the hypothesis that our patient most likely had 2 CNS inflammatory disorders: MS, which manifested as a teenager, and neuromyelitis optica spectrum disorder, which evolved in her sixth decade of life. This case emphasizes a key principle in neurology practice, which is to reconsider whether the original working diagnosis remains tenable, especially when confronted with evidence (clinical and/or paraclinical) that raises the possibility of a distinctively different disorder

    Stevin numbers and reality

    Full text link
    We explore the potential of Simon Stevin's numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.Comment: 22 pages, 4 figures. arXiv admin note: text overlap with arXiv:1104.0375, arXiv:1108.2885, arXiv:1108.420

    Correlated sampling in quantum Monte Carlo: a route to forces

    Full text link
    In order to find the equilibrium geometries of molecules and solids and to perform ab initio molecular dynamics, it is necessary to calculate the forces on the nuclei. We present a correlated sampling method to efficiently calculate numerical forces and potential energy surfaces in diffusion Monte Carlo. It employs a novel coordinate transformation, earlier used in variational Monte Carlo, to greatly reduce the statistical error. Results are presented for first-row diatomic molecules.Comment: 5 pages, 2 postscript figure

    Magnetic field-dependent interplay between incoherent and Fermi liquid transport mechanisms in low-dimensional tau phase organic conductors

    Full text link
    We present an electrical transport study of the 2-dimensional (2D) organic conductor tau-(P-(S,S)-DMEDT-TTF)_2(AuBr)_2(AuBr_2)_y (y = 0.75) at low temperatures and high magnetic fields. The inter-plane resistivity rho_zz increases with decreasing temperature, with the exception of a slight anomaly at 12 K. Under a magnetic field B, both rho_zz and the in-plane resistivity plane rho_xx show a pronounced negative and hysteretic magnetoresistance with Shubnikov de Haas (SdH)oscillations being observed in some (high quality)samples above 15 T. Contrary to the predicted single, star-shaped, closed orbit Fermi surface from band structure calculations (with an expected approximate area of 12.5% of A_FBZ), two fundamental frequencies F_l and F_h are detected in the SdH signal. These orbits correspond to 2.4% and 6.8% of the area of the first Brillouin zone(A_FBZ), with effective masses F_l = 4.0 +/- 0.5 and F_h = 7.3 +/- 0.1. The angular dependence, in tilted magnetic fields of F_l and F_h, reveals the 2D character of the FS and Angular dependent magnetoresistance (AMRO) further suggests a FS which is strictly 2-D where the inter-plane hopping t_c is virtually absent or incoherent. The Hall constant R_xy is field independent, and the Hall mobility increases by a factor of 3 under moderate magnetic fields. Our observations suggest a unique physical situation where a stable 2D Fermi liquid state in the molecular layers are incoherently coupled along the least conducting direction. The magnetic field not only reduces the inelastic scattering between the 2D metallic layers, but it also reveals the incoherent nature of interplane transport in the AMRO spectrum. The apparent ferromagnetism of the hysteretic magnetoresistance remains an unsolved problem.Comment: 33 pages, 11 figure

    Field-free deterministic ultra fast creation of skyrmions by spin orbit torques

    Full text link
    Magnetic skyrmions are currently the most promising option to realize current-driven magnetic shift registers. A variety of concepts to create skyrmions were proposed and demonstrated. However, none of the reported experiments show controlled creation of single skyrmions using integrated designs. Here, we demonstrate that skyrmions can be generated deterministically on subnanosecond timescales in magnetic racetracks at artificial or natural defects using spin orbit torque (SOT) pulses. The mechanism is largely similar to SOT-induced switching of uniformly magnetized elements, but due to the effect of the Dzyaloshinskii-Moriya interaction (DMI), external fields are not required. Our observations provide a simple and reliable means for skyrmion writing that can be readily integrated into racetrack devices

    A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography

    Full text link
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy's foundational work associated with the work of Boyer and Grabiner; and to Bishop's constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.Comment: 57 pages; 3 figures. Corrected misprint

    Quasiparticle properties of a coupled quantum wire electron-phonon system

    Get PDF
    We study leading-order many-body effects of longitudinal optical (LO) phonons on electronic properties of one-dimensional quantum wire systems. We calculate the quasiparticle properties of a weakly polar one dimensional electron gas in the presence of both electron-phonon and electron-electron interactions. The leading-order dynamical screening approximation (GW approximation) is used to obtain the electron self-energy, the quasiparticle spectral function, and the quasiparticle damping rate in our calculation by treating electrons and phonons on an equal footing. Our theory includes effects (within the random phase approximation) of Fermi statistics, Landau damping, plasmon-phonon mode coupling, phonon renormalization, dynamical screening, and impurity scattering. In general, electron-electron and electron-phonon many-body renormalization effects are found to be nonmultiplicative and nonadditive in our theoretical results for quasiparticle properties.Comment: 21 pages, Revtex, 12 figures enclose
    • …
    corecore