13,070 research outputs found

    Black brane entropy and hydrodynamics: the boost-invariant case

    Full text link
    The framework of slowly evolving horizons is generalized to the case of black branes in asymptotically anti-de Sitter spaces in arbitrary dimensions. The results are used to analyze the behavior of both event and apparent horizons in the gravity dual to boost-invariant flow. These considerations are motivated by the fact that at second order in the gradient expansion the hydrodynamic entropy current in the dual Yang-Mills theory appears to contain an ambiguity. This ambiguity, in the case of boost-invariant flow, is linked with a similar freedom on the gravity side. This leads to a phenomenological definition of the entropy of black branes. Some insights on fluid/gravity duality and the definition of entropy in a time-dependent setting are elucidated.Comment: RevTeX, 42 pages, 4 figure

    Localization of Eigenfunctions in the Stadium Billiard

    Full text link
    We present a systematic survey of scarring and symmetry effects in the stadium billiard. The localization of individual eigenfunctions in Husimi phase space is studied first, and it is demonstrated that on average there is more localization than can be accounted for on the basis of random-matrix theory, even after removal of bouncing-ball states and visible scars. A major point of the paper is that symmetry considerations, including parity and time-reversal symmetries, enter to influence the total amount of localization. The properties of the local density of states spectrum are also investigated, as a function of phase space location. Aside from the bouncing-ball region of phase space, excess localization of the spectrum is found on short periodic orbits and along certain symmetry-related lines; the origin of all these sources of localization is discussed quantitatively and comparison is made with analytical predictions. Scarring is observed to be present in all the energy ranges considered. In light of these results the excess localization in individual eigenstates is interpreted as being primarily due to symmetry effects; another source of excess localization, scarring by multiple unstable periodic orbits, is smaller by a factor of â„Ź\sqrt{\hbar}.Comment: 31 pages, including 10 figure

    Hall of Mirrors Scattering from an Impurity in a Quantum Wire

    Full text link
    This paper develops a scattering theory to examine how point impurities affect transport through quantum wires. While some of our new results apply specifically to hard-walled wires, others--for example, an effective optical theorem for two-dimensional waveguides--are more general. We apply the method of images to the hard-walled guide, explicitly showing how scattering from an impurity affects the wire's conductance. We express the effective cross section of a confined scatterer entirely in terms of the empty waveguide's Green's function, suggesting a way in which to use semiclassical methods to understand transport properties of smooth wires. In addition to predicting some new phenomena, our approach provides a simple physical picture for previously observed effects such as conductance dips and confinement-induced resonances.Comment: 19 pages, 8 figures. Accepted for publication in Physical Review B. Minor additions to text, added reference

    Overall Optics Solutions for Very High Beta in Atlas

    No full text
    accelconf.web.cern.ch/accelconf/e08/papers/wepp004.pdfInternational audienceAn insertion optics with a beta-star of at least 2600 m has been requested by the ATLAS experiment at the LHC. This is very far from the standard LHC physics optics and implies a significant reduction in the phase advance from this insertion corresponding to about half a unit in tune. We describe several alternatives how this could be integrated in overall LHC optics solutions with the possibility to inject, ramp and un-squeeze to the required very high beta

    Overall Optics Solutions for very high Beta in ATLAS

    Get PDF
    An insertion optics with a β\beta* of at least 2600m has been requested by the ATLAS experiment at the LHC. This is very far from the standard LHC physics optics and implies a significant reduction in the phase advance from this insertion corresponding to about half a unit in tune. We describe several alternatives how this could be integrated in overall LHC optics solutions with the possibility to inject, ramp and un-squeeze to the required very high-β\beta*

    Divergence-type 2+1 dissipative hydrodynamics applied to heavy-ion collisions

    Full text link
    We apply divergence-type theory (DTT) dissipative hydrodynamics to study the 2+1 space-time evolution of the fireball created in Au+Au relativistic heavy-ion collisions at sNN=\sqrt{s_{NN}}=200 GeV. DTTs are exact hydrodynamic theories that do no rely on velocity gradient expansions and therefore go beyond second-order theories. We numerically solve the equations of motion of the DTT for Glauber initial conditions and compare the results with those of second-order theory based on conformal invariants (BRSS) and with data. We find that the charged-hadron minumum-bias elliptic flow reaches its maximum value at lower pTp_T in the DTT, and that the DTT allows for a value of η/s\eta/s slightly larger than that of the BRSS. Our results show that the differences between viscous hydrodynamic formalisms are a significant source of uncertainty in the precise extraction of η/s\eta/s from experiments.Comment: v4: 29 pages, 12 figures, minor changes. Final version as published in Phys. Rev.

    Tracking and Tolerances Study for the ATLAS High Beta Optics

    No full text
    International audienc

    The Inhibition of Mixing in Chaotic Quantum Dynamics

    Full text link
    We study the quantum chaotic dynamics of an initially well-localized wave packet in a cosine potential perturbed by an external time-dependent force. For our choice of initial condition and with â„Ź\hbar small but finite, we find that the wave packet behaves classically (meaning that the quantum behavior is indistinguishable from that of the analogous classical system) as long as the motion is confined to the interior of the remnant separatrix of the cosine potential. Once the classical motion becomes unbounded, however, we find that quantum interference effects dominate. This interference leads to a long-lived accumulation of quantum amplitude on top of the cosine barrier. This pinning of the amplitude on the barrier is a dynamic mechanism for the quantum inhibition of classical mixing.Comment: 20 pages, RevTeX format with 6 Postscript figures appended in uuencoded tar.Z forma

    Relaxation and Localization in Interacting Quantum Maps

    Full text link
    We quantise and study several versions of finite multibaker maps. Classically these are exactly solvable K-systems with known exponential decay to global equilibrium. This is an attempt to construct simple models of relaxation in quantum systems. The effect of symmetries and localization on quantum transport is discussed.Comment: 32 pages. LaTex file. 9 figures, not included. For figures send mail to first author at '[email protected]
    • …
    corecore