1,627 research outputs found

    What Process is Due? Courts and Science-Policy Disputes

    Get PDF
    A Review of What Process is Due? Courts and Science-Policy Disputes by David M. O\u27Brie

    The Phase Diagram of High Temperature QCD with Three Flavors of Improved Staggered Quarks

    Full text link
    We report on progress in our study of high temperature QCD with three flavors of improved staggered quarks. Simulations are being carried out with three degenerate quarks with masses less than or equal to the strange quark mass, msm_s, and with degenerate up and down quarks with masses in the range 0.1ms≀mu,d≀0.6ms0.1 m_s \leq m_{u,d}\leq 0.6 m_s, and the strange quark mass fixed near its physical value. For the quark masses studied to date we find rapid crossovers, which sharpen as the quark mass is reduced, rather than bona fide phase transitions.Comment: Lattice 2003 (Nonzero temperature and density

    The scaling dimension of low lying Dirac eigenmodes and of the topological charge density

    Full text link
    As a quantitative measure of localization, the inverse participation ratio of low lying Dirac eigenmodes and topological charge density is calculated on quenched lattices over a wide range of lattice spacings and volumes. Since different topological objects (instantons, vortices, monopoles, and artifacts) have different co-dimension, scaling analysis provides information on the amount of each present and their correlation with the localization of low lying eigenmodes.Comment: Lattice2004(topology), Fermilab, June 21 - 26, 2004; 3 pages, 3 figure

    Light pseudoscalar decay constants, quark masses, and low energy constants from three-flavor lattice QCD

    Full text link
    As part of our program of lattice simulations of three flavor QCD with improved staggered quarks, we have calculated pseudoscalar meson masses and decay constants for a range of valence quark masses and sea quark masses on lattices with lattice spacings of about 0.125 fm and 0.09 fm. We fit the lattice data to forms computed with staggered chiral perturbation theory. Our results provide a sensitive test of the lattice simulations, and especially of the chiral behavior, including the effects of chiral logarithms. We find: f_\pi=129.5(0.9)(3.5)MeV, f_K=156.6(1.0)(3.6)MeV, and f_K/f_\pi=1.210(4)(13), where the errors are statistical and systematic. Following a recent paper by Marciano, our value of f_K/f_\pi implies |V_{us}|=0.2219(26). Further, we obtain m_u/m_d= 0.43(0)(1)(8), where the errors are from statistics, simulation systematics, and electromagnetic effects, respectively. The data can also be used to determine several of the constants of the low energy effective Lagrangian: in particular we find 2L_8-L_5=-0.2(1)(2) 10^{-3} at chiral scale m_\eta. This provides an alternative (though not independent) way of estimating m_u; 2L_8-L_5 is far outside the range that would allow m_u=0. Results for m_s^\msbar, \hat m^\msbar, and m_s/\hat m can be obtained from the same lattice data and chiral fits, and have been presented previously in joint work with the HPQCD and UKQCD collaborations. Using the perturbative mass renormalization reported in that work, we obtain m_u^\msbar=1.7(0)(1)(2)(2)MeV and m_d^\msbar=3.9(0)(1)(4)(2)MeV at scale 2 GeV, with errors from statistics, simulation, perturbation theory, and electromagnetic effects, respectively.Comment: 86 pages, 22 figures. v3: Remarks about m_u=0 and the strong CP problem modified; reference added. Figs 5--8 modified for clarity. Version to be published in Phys. Rev. D. v2: Expanded discussion of finite volume effects, normalization in Table I fixed, typos and minor errors correcte

    Light hadrons with improved staggered quarks: approaching the continuum limit

    Full text link
    We have extended our program of QCD simulations with an improved Kogut-Susskind quark action to a smaller lattice spacing, approximately 0.09 fm. Also, the simulations with a approximately 0.12 fm have been extended to smaller quark masses. In this paper we describe the new simulations and computations of the static quark potential and light hadron spectrum. These results give information about the remaining dependences on the lattice spacing. We examine the dependence of computed quantities on the spatial size of the lattice, on the numerical precision in the computations, and on the step size used in the numerical integrations. We examine the effects of autocorrelations in "simulation time" on the potential and spectrum. We see effects of decays, or coupling to two-meson states, in the 0++, 1+, and 0- meson propagators, and we make a preliminary mass computation for a radially excited 0- meson.Comment: 43 pages, 16 figure

    High-Precision Lattice QCD Confronts Experiment

    Get PDF
    We argue that high-precision lattice QCD is now possible, for the first time, because of a new improved staggered quark discretization. We compare a wide variety of nonperturbative calculations in QCD with experiment, and find agreement to within statistical and systematic errors of 3% or less. We also present a new determination of alpha_msbar(Mz); we obtain 0.121(3). We discuss the implications of this breakthrough for phenomenology and, in particular, for heavy-quark physics.Comment: 2 figures, revte

    Full nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks

    Full text link
    Dramatic progress has been made over the last decade in the numerical study of quantum chromodynamics (QCD) through the use of improved formulations of QCD on the lattice (improved actions), the development of new algorithms and the rapid increase in computing power available to lattice gauge theorists. In this article we describe simulations of full QCD using the improved staggered quark formalism, ``asqtad'' fermions. These simulations were carried out with two degenerate flavors of light quarks (up and down) and with one heavier flavor, the strange quark. Several light quark masses, down to about 3 times the physical light quark mass, and six lattice spacings have been used. These enable controlled continuum and chiral extrapolations of many low energy QCD observables. We review the improved staggered formalism, emphasizing both advantages and drawbacks. In particular, we review the procedure for removing unwanted staggered species in the continuum limit. We then describe the asqtad lattice ensembles created by the MILC Collaboration. All MILC lattice ensembles are publicly available, and they have been used extensively by a number of lattice gauge theory groups. We review physics results obtained with them, and discuss the impact of these results on phenomenology. Topics include the heavy quark potential, spectrum of light hadrons, quark masses, decay constant of light and heavy-light pseudoscalar mesons, semileptonic form factors, nucleon structure, scattering lengths and more. We conclude with a brief look at highly promising future prospects.Comment: 157 pages; prepared for Reviews of Modern Physics. v2: some rewriting throughout; references update

    Lattice calculation of 1−+1^{-+} hybrid mesons with improved Kogut-Susskind fermions

    Get PDF
    We report on a lattice determination of the mass of the exotic 1−+1^{-+} hybrid meson using an improved Kogut-Susskind action. Results from both quenched and dynamical quark simulations are presented. We also compare with earlier results using Wilson quarks at heavier quark masses. The results on lattices with three flavors of dynamical quarks show effects of sea quarks on the hybrid propagators which probably result from coupling to two meson states. We extrapolate the quenched results to the physical light quark mass to allow comparison with experimental candidates for the 1−+1^{-+} hybrid meson. The lattice result remains somewhat heavier than the experimental result, although it may be consistent with the π1(1600)\pi_1(1600).Comment: 24 pages, 12 figures. Replaced to match published versio

    Waning efficacy in a long-term AAV-mediated gene therapy study in the murine model of Krabbe disease

    Get PDF
    Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies
    • 

    corecore