54 research outputs found

    OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge Collaborative AutoML System

    Full text link
    Automated machine learning (AutoML) seeks to build ML models with minimal human effort. While considerable research has been conducted in the area of AutoML in general, aiming to take humans out of the loop when building artificial intelligence (AI) applications, scant literature has focused on how AutoML works well in open-environment scenarios such as the process of training and updating large models, industrial supply chains or the industrial metaverse, where people often face open-loop problems during the search process: they must continuously collect data, update data and models, satisfy the requirements of the development and deployment environment, support massive devices, modify evaluation metrics, etc. Addressing the open-environment issue with pure data-driven approaches requires considerable data, computing resources, and effort from dedicated data engineers, making current AutoML systems and platforms inefficient and computationally intractable. Human-computer interaction is a practical and feasible way to tackle the problem of open-environment AI. In this paper, we introduce OmniForce, a human-centered AutoML (HAML) system that yields both human-assisted ML and ML-assisted human techniques, to put an AutoML system into practice and build adaptive AI in open-environment scenarios. Specifically, we present OmniForce in terms of ML version management; pipeline-driven development and deployment collaborations; a flexible search strategy framework; and widely provisioned and crowdsourced application algorithms, including large models. Furthermore, the (large) models constructed by OmniForce can be automatically turned into remote services in a few minutes; this process is dubbed model as a service (MaaS). Experimental results obtained in multiple search spaces and real-world use cases demonstrate the efficacy and efficiency of OmniForce

    Expression of CIAPIN1 in human colorectal cancer and its correlation with prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cytokine-induced anti-apoptotic molecule (CIAPIN1) had been found to be a differentially-expressed gene involved in a variety of cancers, and it was also considered as a candidate tumour suppressor gene in gastric cancer, renal cancer and liver cancer. However, studies on the role of CIAPIN1 in colorectal cancer were still unavailable. The aim of this study was to determine the prognostic impact of CIAPIN1 in 273 colorectal cancer (CRC) samples and to investigate the CIAPIN1 expression in CRC cell lines after inducing differentiation.</p> <p>Methods</p> <p>Immunohistochemical analysis was performed to detect the expression of CIAPIN1 in CRC samples from 273 patients. The relationship between CIAPIN1 expression and patients' characteristics (gender, age, location of cancer, UICC stage, local recurrence and tumour grade factors) was evaluated. In addition, these patients were followed up for five consecutive years to investigate the relationship between CIAPIN1 expression and the prognosis of CRC. We induced the differentiation of the CRC cell lines HT29 and SW480, in order to detect the expression of CIAPIN1 in the process of CRC cells differentiation.</p> <p>Results</p> <p>Results indicated that CIAPIN1 was mainly expressed in the cytoplasm and nucleus, and that its expression level in cancer samples was significantly lower than in normal tissues. The Wilcoxon-Mann-Whitney test showed a significant difference in the differential expression of CIAPIN1 in patients with different T and UICC stages, and tumour grade (<it>P </it>= 0.0393, 0.0297 and 0.0397, respectively). The Kaplan-Meier survival analysis demonstrated that the survival time of CRC patients with high expression of CIAPIN1 was longer than those with low expression during the 5-year follow up period (<it>P </it>= 0.0002). COX regression analysis indicated that low expression of CIAPIN1, cancer stage of > pT1, distant organ metastasis (pM<sub>1</sub>), regional lymph node metastasis (> pN<sub>1</sub>) and local recurrence (yes) were independent, poor prognostic factors of CRC (<it>P </it>= 0.012, <it>P </it>= 0.032, <it>P <</it>0.001, <it>P <</it>0.001, <it>P <</it>0.001 respectively). Both Western blotting and RT-PCR showed that CIAPIN1 expression was increased with the degree of differentiation of HT29 and SW480 cells.</p> <p>Conclusions</p> <p>CIAPIN1 played an important role in the differentiation of CRC cells, and the differential expression of CIAPIN1 in CRC was closely related to prognosis.</p

    Quercetin Alleviates Pulmonary Fibrosis in Mice Exposed to Silica by Inhibiting Macrophage Senescence

    Get PDF
    Quercetin exerts anti-inflammatory, anti-oxidant and other protective effects. Previous studies have shown that senescent cells, such as fibroblasts and type II airway epithelial cells, are strongly implicated in the development of pulmonary fibrosis pathology. However, the role of senescent macrophages during silicosis remains unclear. We investigated the effects of quercetin on macrophage senescence and pulmonary fibrosis, and explored underlying mechanisms. Mice were randomized to six model groups. Vitro model was also established by culturing RAW264.7 macrophages with silica (SiO2). We examined the effects of quercetin on fibrosis, senescence-associated β-galactosidase (SA-β-Gal) activity, and senescence-specific genes (p16, p21, and p53). We showed that quercetin reduced pulmonary fibrosis and inhibited extracellular matrix (ECM) formation. Quercetin also attenuated macrophage senescence induced by SiO2 both in vitro and in vivo. In addition, quercetin significantly decreased the expressions of the senescence-associated secretory phenotype (SASP), including proinflammatory factors (interleukin-1α (Il-1α), Il-6, tumor necrosis factor-α (TNF-α), and transforming growth factor-β1 (TGF-β1)) and matrix metalloproteinases (MMP2, MMP9, and MMP12). In conclusion, quercetin mediated its anti-fibrotic effects by inhibiting macrophage senescence, possibly via SASP

    Effects of Different Soils on the Biomass and Photosynthesis of Rumex nepalensis in Subalpine Region of Southwestern China

    No full text
    The performance of Rumex nepalensis, an important medicinal herb, varies significantly among subalpine grasslands, shrublands and forest ecosystems in southwestern China. Plant&ndash;soil feedback is receiving increasing interest as an important driver influencing plant growth and population dynamics. However, the feedback effects of soils from different ecosystems on R. nepalensis remain poorly understood. A greenhouse experiment was carried out to identify the effects of different soil sources on the photosynthesis and biomass of R. nepalensis. R. nepalensis was grown in soils collected from the rooting zones of R. nepalensis (a grassland soil, RS treatment), Hippophae rhamnoides (a shrub soil, HS treatment), and Picea asperata (a forest soil, PS treatment). The chlorophyll contents, net photosynthetic rates, and biomasses of R. nepalensis differed significantly among the three soils and followed the order of RS &gt; HS &gt; PS. After soil sterilization, these plant parameters followed the order of RS &gt; PS &gt; HS. The total biomass was 16.5 times higher in sterilized PS than in unsterilized PS, indicating that the existence of soil microbes in P. asperata forest ecosystems could strongly inhibit R. nepalensis growth. The root to shoot biomass ratio of R. nepalensis was the highest in the sterilized PS but the lowest in the unsterilized PS, which showed that soil microbes in PS could change the biomass allocation. Constrained redundancy analysis and path analysis suggested that soil microbes could impact the growth of R. nepalensis via the activities of soil extracellular enzymes (e.g., &beta;-1,4-N-acetylglucosaminidase (NAG)) in live soils. The soil total soluble nitrogen concentration might be the main soil factor regulating R. nepalensis performance in sterilized soils. Our findings underline the importance of the soil microbes and nitrogen to R. nepalensis performance in natural ecosystems and will help to better predict plant population dynamics

    Preparation of Glass-Ceramics in the R<sub>2</sub>O-Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> System Applied in Automobile Glass Enamel

    No full text
    Environmental deterioration has put higher requirements on the acid resistance of automotive glass enamel. The present paper aims to prepare acid-resistant glass-ceramics used in automobile glass enamel. Base glasses with the compositions 15R2O-xBi2O3-10B2O3-(75-x) SiO2 (R2O is a mixture of Li2O, Na2O, and K2O (1:1:1, molar ratio), where x = 10, 15, 20, 25, and 30, respectively) was prepared by the melt-quenching method, and glass-ceramics were prepared by their controlling crystallization heat treatment. Crystallization behavior and crystallization ability of base glasses were investigated using the thermal stability parameter (S), the crystallization kinetics calculation results of base glasses, as well as the phase identification results of the heat-treated samples. The effects of the heat treatment temperature on the micromorphology and acid resistance of the heat-treated glasses were also investigated. Then, the optimized glass ceramic was used to prepare automotive glass enamel. The results indicate that: (I) with the increase of Bi2O3/SiO2 ratio, the characteristic temperature of the base glass decreases, the coefficient of thermal expansion (CTE) and crystallization ability increases significantly, the crystallization temperature range becomes wider; (II) the crystallization activation energy of base glasses are in the range of 169~264 kJ/mol; (III) Bi2SiO5 and Bi2O2SiO3 metastable phases are mainly precipitated when the crystallization temperature is between 530 °C and 650 °C, while only Bi4Si3O12 phase is precipitated when the crystallization temperature is above 650 °C; (IV) crystallinity of base glass increases significantly with increasing heat treatment temperature, which is beneficial to improve the acid resistance of heat treated products; (V) automotive glass enamel was prepared by mixing 15R2O-25Bi2O3-10B2O3-50SiO2 glass-ceramic powder with copper-chrome black and varnish, and then printed on the automobile glass substrate. All the properties of the sintered enamel can meet the market requirements, and the acid resistance of our product is better than that of market products

    Effects of Different Soils on the Biomass and Photosynthesis of <i>Rumex nepalensis</i> in Subalpine Region of Southwestern China

    No full text
    The performance of Rumex nepalensis, an important medicinal herb, varies significantly among subalpine grasslands, shrublands and forest ecosystems in southwestern China. Plant–soil feedback is receiving increasing interest as an important driver influencing plant growth and population dynamics. However, the feedback effects of soils from different ecosystems on R. nepalensis remain poorly understood. A greenhouse experiment was carried out to identify the effects of different soil sources on the photosynthesis and biomass of R. nepalensis. R. nepalensis was grown in soils collected from the rooting zones of R. nepalensis (a grassland soil, RS treatment), Hippophae rhamnoides (a shrub soil, HS treatment), and Picea asperata (a forest soil, PS treatment). The chlorophyll contents, net photosynthetic rates, and biomasses of R. nepalensis differed significantly among the three soils and followed the order of RS > HS > PS. After soil sterilization, these plant parameters followed the order of RS > PS > HS. The total biomass was 16.5 times higher in sterilized PS than in unsterilized PS, indicating that the existence of soil microbes in P. asperata forest ecosystems could strongly inhibit R. nepalensis growth. The root to shoot biomass ratio of R. nepalensis was the highest in the sterilized PS but the lowest in the unsterilized PS, which showed that soil microbes in PS could change the biomass allocation. Constrained redundancy analysis and path analysis suggested that soil microbes could impact the growth of R. nepalensis via the activities of soil extracellular enzymes (e.g., β-1,4-N-acetylglucosaminidase (NAG)) in live soils. The soil total soluble nitrogen concentration might be the main soil factor regulating R. nepalensis performance in sterilized soils. Our findings underline the importance of the soil microbes and nitrogen to R. nepalensis performance in natural ecosystems and will help to better predict plant population dynamics
    corecore